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Ðåçþìå. Ñòàòòÿ óçàãàëüíþ¹ ìàòåìàòè÷íó òåîðiþ âiáðîðiâíîâàãè íà âè-
ïàäîê àêóñòè÷íî-êåðîâàíî¨ ïîâåðõíi ðîçäiëó ìiæ âèïàðîâíèì ãàçîì òà
ðiäèíîþ â êîíòåéíåði.

Abstract. The present paper generalises mathematical theory of vibroequi-
libria onto the case of the acoustically-driven interface between ullage gas and
liquid in a container.

1. Introduction
Using high-frequency vibrations and acoustic waves for the contactless con-

trol of a limited liquid volume is a relatively-old technologic idea coming from
the 70-90's. In this context, one should mention the so-called acoustical levita-
tion (of liquid drops) utilised in chemical and pharmaceutical industries as well
as for getting ultra-pure (smart) materials [4, 6, 15]. A mathematical theory of
acoustically-levitated liquid drops can be found in [5]. Other popular studies
deal with mean (time-averaged) shapes of the contained liquid in tanks under-
going a high-frequency vibration. These are associated with novel microgravity
technologies, whose fundamentals were recently developed in experiments [7,12]
(see, also, references therein). To explain the experimental vibro-phenomena,
the authors extensively employ theoretical concept of vibroequilibria, which
were �rst considered and analysed in the applied mathematical works [1, 2, 8].
The vibroeqilibria (time-averaged, mean liquid shapes in vibrating containers)
may dramatically di�er from those caused by Newtonian gravitation and sur-
face tension. The di�erence is clari�ed by vibrational forces introduced by
Blekhman [3]. The extra (in addition to gravitation and surface tension) forces
a�ect both the mean liquid shape and its hydrodynamic stability, i.e., the
high-frequency tank vibrations may make the mean free surface unstable, or,
contrary, stabilise it. Using the mathematical theory from [1,2,8], even though
it was based on a rather simple hydrodynamic model of ideal compressible �u-
ids, demonstrates a rather adequate prediction of the experimentally-observed
vibrational phenomena.

Along with technologies of acoustical levitation and vibrational control of a
limited liquid volume in a shaken tank, there exists another class of contactless
(acoustic) techniques in microgravity, whose idea comes from famous experi-
mental observations by Wesseln [16]. These experiments showed that generat-
ing an acoustic �eld in the ullage gas (vapour) makes it possible to destabilise
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(stabilise) the liquid-gas interface for certain input acoustic frequencies. For
cryogenic two-layer �uids, the destabilisation leads to extensive evaporations of
the condensed component, an increase of the mean pressure in the gas domain,
and, thereby, it causes the so-called acoustic pumping. A physical theory of
the acoustic pumping can be found in [10,13]. By utilising [5], the present pa-
per develops elements of a mathematical theory of the acoustic destabilisation
(stabilisation).

After formulating the non-dimensional mathematical statement of the con-
sidered hydrodynamic problem in � 2, which adopts the model of ideal com-
pressible barotropic two-layer �uids, we introduce small parameters (and re-
lations between them) in � 3 to apply the two-timing (separation of slow and
fast time) asymptotic technique and derive the free-surface problem describing
slow (modulated) motions of the liquid exposed to acoustic loads from the gas
side. Mathematically, the latter problem looks identical to those appearing in
the liquid sloshing dynamics for a motionless container when Newtonian grav-
itation, surface tension and acoustic radiation pressure become comparable on
the introduced asymptotic scale. This makes it possible to generalise classical
results [11] on sloshing of a capillary liquid. � 4 introduces acoustic equilib-
ria (generalisation of capillary equilibria) and spectral theory of linear relative
(natural) harmonic standing waves (natural sloshing modes and frequencies).
Spectral criterion of stability for the acoustic equilibria is formulated and ap-
plied to show that acoustic �eld can destabilise the �at liquid-gas interface (if
exists) for certain input acoustic frequencies. In � 5, we derive an analogy of
(pseudo-)potential energy for the acoustic equilibria.

2. Statement of the problem

Following [1], we consider the rigid container

Q = Q1(t) ∩Q2(t) = {(x, y, z)|W (x, y, z) < 0},

which is �lled by a two-layer �uid where the upper �uid is associated with the
ullage (ideal compressible barotropic) gas (domain Q1(t)) but the lower one
is an ideal compressible barotropic liquid (domain Q2(t)). The gas and liquid
domains are time-dependent and the interface

Σ(t) = ∂Q2(t) ∩ ∂Q1(t) = {(x, y, z)|ξ(z, y, z, t) = 0}

is implicitly speci�ed by the preliminary unknown function ξ such that∇ξ/|∇ξ|
is the outer normal to Q2(t) on Σ(t). The gravitational acceleration is directed
downward, against the Ox-axis. Furthermore, we assume an acoustic �eld
generated in Q1(t) by means of a vibrator on a piece of the time-independent
gas boundary

S0 ⊂ ∂Q1(t), S0 ∩ Σ(t) = ∅,
which is, in fact, a part of the tank wall contacting with Q1(t).

As in [1,5], the two-layer �uid dynamics is described by the velocity potentials
φi(x, y, z, t), the pressure pi(x, y, z, t) and density ρi(x, y, z, t) �elds in ullage
gas (i = 1) and liquid (i = 2), respectively. Henceforth, the corresponding
boundary value problem is considered in the non-dimensional statement, which
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appears after choosing the characteristic dimension (length) l and time 2π/σ,
where σ is the circular frequency of the acoustic �eld in the gas. This non-
dimensional mathematical statement takes then the form [5]:

ρi∇
(
φ̇i +

1

2
(∇φi)

2 + σ−2
∗ Bo x

)
= −∇pi; ρi =

(
pi
p0i

)1/γi

in Qi(t), (1)

ρ̇i + div(ρi∇φi) = 0 in Qi(t);

∫
Qi(t)

ρidQ = mi, (2)

∂nφi = 0 on Si(t); ∂nφi = − ξ̇/|∇ξ| on Σ(t), (3)

−p2 + σ−2
∗ (K1 +K2) = −δ0 p1 on Σ(t), (4)

− (∇W,∇ξ)
|∇W ||∇ξ|

= cosα on ∂Σ(t), (5)

ρ1 ∂nφ1 = ε µ0 k
−1 V (x, y, z) sin t on S0, (6)

where Si(t) = ∂Q ∩ ∂Qi (i = 1, 2) are the time-depending wetted (contacted)
walls of Q by gas and liquid, respectively, ∂Σ(t) is the contact (gas-liquid-tank)
line (curve), α is the contact angle (we assume that α =const), Ki are the main
curvatures of Σ(t), ρ0i are the mean densities of gas and liquid, respectively, γi
are the adiabatic indices for the barotropic �uids, p0i are the non-dimensional
mean (static) pressures in the �uids (i = 1, 2), m1 and m2 are (constant)
masses of gas and liquid, respectively; the dot implies the time-derivative and
∂n is the (outer) normal derivative. Furthermore, σ∗ = σ

√
ρ02l/Ts is the non-

dimensional (normalised) acoustic frequency, where Ts is the surface tension,
Bo = gl2ρ02/Ts is the Bond number, where g is the gravity acceleration, k =
σl/c is the wave number of the acoustic �eld in the gas, where c is the sound
speed in the gas, δ0 = ρ01/ρ02 ≪ 1 is the ratio between the mean densities.

Originally, V0(x, y, z) sin(σt) is the given dimensional distribution of the nor-
mal velocity on the acoustic vibrator S0 ⊂ S1 but the normalisation intro-
duces the non-dimensional distribution V = V0/sup|V0|, the small parameter
ε = sup |V0|/(cµ0) ≪ 1 (ratio of the maximum vibration velocity and the sound
speed, an analogy of the Mach number) as well as the non-dimensional param-
eter µ0 = O(1).

Remark 2. Since the �uids (gas and liquid) are barotropic, equations (1) admit
the Lagrange-Cauchy integral. However, this does not simplify the asymptotic
procedure below.

3. Asymptotic almost-periodic solution of (1)-(6)

The problem (1)-(6) contains two small parameters, one of which is asso-
ciated with the density ratio δ0 ≪ 1 but the second small parameter is the
non-dimensional value σ−2

∗ ≪ 1, which physically implies that the sound fre-
quency is much larger than the lowest eigenfrequency of the interfacial (slosh-
ing) waves [11]. To construct an almost-periodic solution, we assume the fol-
lowing asymptotic relations between the two small parameters

ρ01
/
ρ02 = δ0 = µ1ε, µ1 = O(1); σ−2

∗ = µ µ1ε
3, µ = O(1). (7)
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The asymptotic procedure adopts the multi-timing technique of vibrational
mechanics [3], which introduces fast and slow time scales such that the fast time
is associated with the dimensionless time t appearing in the inhomogeneous
condition (6) (expresses the input acoustic signal) and the slow time scale τ
should be proportional to the square-root of the dimensionless forces of potential
type (Newtonian gravitation and surface tension). The latter forces are of the
order O(ε3); they appear in the dynamic interface condition (4) and the Euler

equations (1). Therefore, the slow time is de�ned as τ = ε3/2t and the non-
dimensionless solution of (1)-(6), (7) can be posed in the following form

φi =

∞∑
k=0

εk/3 φ
(k)
i (x, y, z, t, τ), pi =

∞∑
k=0

εk/3 p
(k)
i (x, y, z, t, τ),

ρi =

∞∑
k=0

ε(k/3) ρ
(k)
i (x, y, z, t, τ), ξ =

∞∑
k=0

εk/3 ξk(x, y, z, t, τ).

(8)

Substituting (8) into (1)-(6) and using the standard multi-timing technique,
which separates t and τ , derives the free-surface (sloshing-type) problem

∆φ = 0 in ⟨Q2⟩(τ), (9)

∂nφ = 0 on ⟨S2⟩(τ), (10)

∂nφ = −∂τζ/|∇ζ| on ⟨Σ⟩(τ), (11)

∂τφ+
1

2
(∇φ)2 + µµ1 (Bo x− (K1 +K2))+

+
µ1
4

(
k2Φ2 − (∇Φ)2

)
= const on ⟨Σ⟩(τ),

− (∇W,∇ζ)
|∇W ||∇ζ|

= cosα on ∂⟨Σ⟩(τ);
∫
⟨Q2⟩

dQ = const

(12)

subject to

∆Φ+ k2Φ = 0 in ⟨Q1⟩(τ);
∂nΦ = 0 on ⟨S1⟩(τ) ∪ ⟨Σ⟩(τ);

∂nΦ = µ0
V (x, y, z)

k
on S0,

(13)

which describes the wave function Φ in the slowly changing gas domain ⟨Q1⟩(τ).
Here, ⟨·⟩ denotes averaging by the fast time t and, therefore, ⟨Q2⟩(τ), ⟨S2⟩(τ)

and ⟨Σ⟩(τ) are the fast-time averaged liquid domain, wetted tank surface and
interface, respectively. The boundary value problem (9)-(13) couples the main
terms of the asymptotic representation (8)

φ2 = ε φ(x, y, z, τ) + o(ε);

φ1 = ε2/3 Φ(x, y, z, τ) sin t+O(ε);

ξ = ζ(x, y, z, τ) + o(ε),

(14)

which are also independent of t.
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Remark 3. The boundary value problem (9)-(12) is of the mathematically iden-
tical structure to the classical sloshing problem of a capillary liquid but with extra
pseudo-di�erential terms in the dynamic boundary condition associated with Φ
appearing as solution of the Neumann boundary value problem (13). These ex-
tra terms can be interpreted as the acoustic radiation pressure. The radiation
pressure parametrically depends on the slowly-varying interface ⟨Σ⟩(τ).

4. Acoustic equilibria and relative harmonic waves

If the -time averaged interface does not depend on the slow time τ , i.e.

⟨Σ⟩ = Σ0 :ζ0 = ζ0(x, y, z) = 0, ⟨Qi⟩ = ⟨Qi⟩0 (i = 1, 2),

φ = 0, Φ = Φ0(x, y, z),

the problem (9)-(13) reduces to the stationary boundary problem

− µ(K1 +K2)− µ Bo x+
1

4

(
k2 Φ2

0 − (∇Φ0)
2
)
= const on Σ0,

− (∇W,∇ζ0)
|∇W ||∇ζ0|

= cosα on ∂Σ0;

∫
⟨Q2⟩0

dQ = const,
(15)

where Φ0 comes from the Newman boundary value problem

∆Φ0 + k2 Φ0 = 0 in ⟨Q1⟩0;
∂nΦ0 = 0 on ⟨S1⟩0 ∪ Σ0;

∂nΦ0 = µ0
V (x, y, z)

k
on S0,

(16)

(S0 ∪Σ0 ∪ ⟨S1⟩0 = ∂⟨Q1⟩0). Equality (15) expresses a balance between surface
tension, gravitation and the Langevin acoustic radiation. Following [5], solution
of (15), (16) (surface Σ0 and wave function Φ0) is called the acoustic equilibrium.

Remark 4. For the introduced asymptotic relations (7), the time-averaged
(mean) surface Σ0 may dramatical di�er from the capillary surface. The Lan-
gevin acoustic radiation can also in�uence stability of Σ0 as well as the natural
sloshing frequencies and modes by (9)-(13), which are, in fact, small harmonic
waves relative to Σ0.

Suppose Σ0 admits the singe-valued representation, x = H0(y, z), and lin-
earise (9)�(13) relative to the acoustic equilibrium Σ0. Furthermore, we con-
sider the natural sloshing modes (H,ψ,Ψ) and frequencies (ω), which corre-
spond to the harmonic solution

h = exp(iωτ)H(y, z); φ = iω exp(iωτ)ψ(x, y, z), Φ = iω exp(iωτ)Ψ(x, y, z)

of the linearised problem. The result is the spectral boundary problem with
respect to H and ψ

∆ψ = 0 in ⟨Q2⟩0; ∂nψ = 0 on ⟨S2⟩0; ∂nψ =
H

(1 + (∇H0)2 )1/2
on Σ0, (17)

−ω2 ψ + µ1µAH = 0 on Σ0, (18)
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where ω2 is the spectral parameter and the linear operator A = A1 +A2 takes
the form

AH = [A1H] + [A2H] =

=

[
−div

{
∇H

(1 + (∇H0)2 )1/2
− (∇H,∇H0)∇H0

(1 + (∇H0)2 )3/2

}]
+

+
[ 1

2µ

{
k2 Φ0 Φ0x H − (∇Φ0,∇Φ0x)H+

+ k2 Φ0 Ψ− (∇Φ0,∇Ψ)
}
+ BoH

]
,

(19)

WyHy +WzHz

|∇2W |
=
WyH0y +WzH0z

|∇2W |
(∇H,∇H0)

(1 + (∇H0)2 )1/2
on ∂Σ0;∫

Σ0

Hdydz = 0,

(20)

∆Ψ+ k2Ψ = 0 in Q0; ∂nΨ = 0 on ⟨S1⟩0 ∪ S0,

∂nΨ =
Φ0xxH − Φ0zHz − Φ0yHy − [Φ0xyH0y +Φ0xzH0z]H

(1 + (∇H0)2 )1/2
on Σ0.

(21)

One can study spectral properties of the pseudo-di�erential operator A and
show that it is self-conjugated and has a real pointer spectrum with only a �nite
set of negative eigenvalues. The following theorem establishes main properties
of (17), (18) with the operator (19)�(21).

Theorem 1. Let H0, Φ0 be a solution of the acoustic equilibria problem (9)-
(13) such that H0 ∈ C2(pΣ0) and Φ0 ∈ C2(⟨Q1⟩0 ∪ Σ0) (here, pΣ0 is the
projection of Σ0 on the Oyz plane). Then

1. The spectral boundary problem (17)-(21) has a real pointer spectrum con-
sisting of eigenvalues and {Hn} is the functional basis in the factor-space
L2(pΣ0)/const.

2. The set of negative eigevalues {n|ω2
n < 0} is �nite.

Proof. Introduce the auxiliary Steklov-Poinc�are operator T : H → ψ|Σ0 , which
is de�ned by the Neumann problem (17). This operator T is precompact and
invertible on the dense set in the factor-space L2(pΣ0)/const. The boundary
condition (18) yields the spectral equation

C0(ω
2)H = (µµ1A− ω2T )H = 0. (22)

Spectrum of (22) coincides with spectrum of the original problem (17)-(21).
Consider operator A1, de�ned by formulas (19). It appears when analysing

the eigenoscillations of the capillary liquid and is unbounded, self-conjugate
and positive in L2(pΣ0)/const. Let us introduce the auxiliary operators C1

and C2 as

C1(ω
2) = ω2A−1

1 T − µµ1(E +A−1
1 A2) = C2(ω

2)− µµ1E,

where C1 is due to the action of A−1
1 from the left on operator C0 in (22). The

operator C2(ω
2) is precompact in the factor-space L2(pΣ0)/const. If ω

2 is the
eigenvalue of (22), then µµ1 is the eigenvalue of the self-conjugate operator C2,
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and, therefore, ω2 is the eigenvalue of the original spectral problem (17)-(21).
Because T and A are self-conjugate operators, their eigenvalues are real.

Regular set of the spectral boundary problem (17)-(21) is not empty and
contains, at least, complex numbers with non-zero imaginary components. For
a regular point ω2

0, equation (22) is equivalent to the spectral equation(
C + (ω2 − ω2

0)
−1E

)
H = 0

where C(ω2
0) = C1(ω

2
0)

−1A−1
1 T is the compact operator in L2(pΣ0). Because

C is compact, its pointer spectrum consists of eigenvalues. As a consequence,
the �rst assertion of the theorem holds true.

All eigenvalues of A−1
1 T are positive and follow from the spectral boundary

problem on the natural sloshing modes and frequencies of the capillary liquid,
i.e. for all admissible H, the inequality

(A−1
1 TH,H) > 0

holds true. Therefore,

ω2
n = µµ1((Hn,Hn) + (A−1

1 A2Hn,Hn))/(A
−1
1 THn,Hn),

where (Hn,Hn) = 1, (A−1
1 THn,Hn) > 0. Because A−1

1 A2 is compact and

{Hn} is the functional base in L2(pΣ0), then (A−1
1 A2Hn,Hn) → 0, n → ∞.

Therefore, the second assertion holds.

Corollary 4.2 a. The acoustic equilibria may blow up only due to a �nite set
of linearly-independent perturbations.
Corollary 4.2 b. The acoustic equilibria are stable, if and only if, all eigen-
values {ω2

n} of A are positive.

The second corollary is the same as the so-called spectral stability criteria,
which was already used in [11] for analysing the stability of the capillary equi-
libria. The stability was investigated by studying the spectrum of the A1-type
operator.

Example 1. (The �at acoustic equilibrium.) The �at capillary surface in an
upright cylindrical tank is realised for the contact angle α = π/2. The �at Σ0 is
also possible for the acoustic equilibria when acoustic vibrator on S0 generates
a planar standing wave, namely, when

V0(x, y, z) = V0 = const

(
ε = − V0

c sin(kh1)
, µ0 = − sin(kh1), V (y, z) = 1

)
.

The acoustic equilibrium is then associated with the following solution

H0(y, z) ≡ 0; Φ0(x, y, z) = k−2 cos(kx). (23)

According to [11, 14], the �at capillary surface corresponds to a unique so-
lution of the capillary problem in an upright circular cylinder, if and only if,
Bo > κ211, where κ11 is the minimum root of J ′

1(κ11) = 0 (Jp(·) is the Bessel
function of the �rst kind). Let us pose solutions of the nonlinear boundary
value problem (15), (16) as the Fourier series by

hpq(r, θ) = Jp(κpqr)
sin
cos(pθ)
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in the cylindrical coordinate system, i.e.

H0(r, θ) =
∑
pq ̸=00

ηpq hpq(r, θ), (24)

and

Φ0(x, y, z) = k−2 cos(kx)+
∑
pq ̸=00

χpq bpq(x) hpq(r, θ)+χ00 cos(k(x−h1)), (25)

where

bpq(x) =


− cosh(ϕ(x− h1))

cosh(ϕh1) ϕ tanh(ϕh1)
, κpq > k,

− cos(ϕ(x− h1))

cos(ϕh1) ϕ tan(ϕh1)
, κpq < k,

ϕ =
√

|κ2pq − k2|,

in which ηpq, χpq are the unknown coe�cients.
Each index pq corresponds to two unknown coe�cients for asymmetric solu-

tions and one for symmetric ones hpq(r, θ), namely,

ηpq hpq(r, θ) =

{
η′pq Jp(κpqr) sin pθ + η′′pq Jp(κpqr) cos pθ, p ̸= 0,

η0q J0(κ0q), p = 0.
(26)

Inserting (24) and (25) into equations (15) and (16) and using the Fredholm
alternative leads to an in�nite system of nonlinear equations with respect to
η = {ηpq}. To within the o(||η||)-quantities, we have the equalities

Gαβ = Cαβ ηαβ + o(||η||) = 0, (27)

where

Cpq = µ(Bo + κpq ) +
1

2
bpq(0), p = 0, 1, ...; q = 1, 2, ... (28)

(Cpq are the eigenvalues of the operator A).
The system (27) admits the trivial solution η = 0, which corresponds to the

�at acoustic equilibrium. Trivial solution is stable as Cpq > 0. When there
is an index pq, such that Cpq(k) = 0, the trivial solution may not become
unique. For the eigenvalues with p ̸= 0, two equations in (27) do not have
linear components at ηpq but the eigenvalues C0q, q = 1, 2, . . . have the single
multiplicity. In the latter case, the Krasnoselsky theorem [9] gives the su�cient
condition of bifurcation of the trivial solution.

5. Pseudo-potential energy of acoustic equilibria

The above example shows that �nding the stable acoustic equilibria from
its di�erential statement (15), (16) can be e�cient when interface Σ0 coincides
with the capillary surface. If the acoustic equilibrium Σ0 di�ers from the capil-
lary surface, identifying solutions of (15), (16) and studying their stability may
become a rather complicated task. For the capillary surface, this task su�-
ciently simpli�es by employing the potential energy functional whose minima
correspond to the stable liquid shapes. Finding these shapes reduces to a direct
numerical minimisation of the potential energy functional.
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Theorem 1 in [1] states that the smooth solution of (1)-(6) can follow from
necessary extrema condition of the functional

G(ξ, φi, ρi) =

∫ t2

t1

{∫
Q2

ρ2

(
(∇φ2)

2

2
− U2(ρ2)− µµ1 ε

3 Bo x

)
dQ−

− µµ1 ε
3 (|Σ| − cosα|S2|)+

+ ε

∫
Q1

ρ1

(
(∇φ1)

2

2
− U1(ρ1)− µµ1 ε

3 Bo x

)
dQ

}
dt

(29)

subject to (1)-(3), (6) and for small variations

δξ|t1,t2 = 0, δρi|t1,t2 = 0 (30)

where pi = ρ2i dUi /dρi.
By using the multi-timing technique, one can show that

⟨G(ξ, φi, ρi)⟩ = const+ εG(ζ, φ) +O(ε4/3),

where

G(ζ, φ) =
∫ τ2

τ1

{∫
⟨Q2⟩

(
(∇φ)2

2
− µµ1Box

)
dQ−

− µµ1 (|⟨Σ⟩| − cosα|⟨S2⟩|)+

+
µ1
4

∫
⟨Q1⟩

(
k2Φ2 − (∇Φ)2

)
dQ− µ0µ1

2k

∫
S0

ΦV (x, y, z)dS

}
dτ,

(31)

where ∫
⟨Q2⟩

(∇φ)2

2
dQ

implies the pseudo-kinetic energy for the sloshing problem (9)�(13) but the
remaining quantities can be interpreted as the minus pseudo-potential energy.

Theorem 2. The problem on the stable acoustic equilibria Σ0 : ζ0 = 0 is
equivalent to identifying the minima of the functional

Π(ζ0) = µ

(
|Σ0|+ cosα|⟨S1⟩|+

∫
⟨Q2⟩0

BoxdQ

)
+

+

(
1

4

∫
⟨Q1⟩0

(k2Φ2
0 − (∇Φ0)

2)dQ+
µ0
2k

∫
S0

V (x, y, z)Φ0dS

)
=

= −G(ζ0(x, y, z),Φ0(x, y, z)),

(32)

where Φ0 is the solution of (16) subject to the volume conservation condition∫
⟨Q2⟩0

dQ = const.

The proof comes from computing the second variation byH0 of the functional
Π(x −H0). The second variation by Σ0 for the surface tension quantities was
already derived in [11] (chapter 1). The �rst variation by Φ0 is equal to zero
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restricted to (16) but the �rst variation by H0 leads to equation (15), which
links Φ0 and H0. Furthermore,

δ2Π = µ−1

∫
pΣ0

(AδH, δH)dydz,

where A is the operator by (19)-(21). Condition δ2Π > 0 is equivalent to the
spectral stability criteria 4.2 a.

6. Conclusions

By applying the fast-time averaging of the non-dimensional free-interface
problem for two compressible �uids, the mathematical theory of levitating drops
in [5] is generalised to study how acoustic �eld in the ullage gas may a�ect the
mean (time-averaged) liquid-gas interface (called the acoustic equilibrium) and
its stability. The theory includes a spectral theorem on the natural frequencies
and modes and a pseudo-potential energy introduced for the acoustic equilibria.

The second author acknowledges the �nancial support of the Centre of Au-
tonomous Marine Operations and Systems (AMOS) whose main sponsor is the
Norwegian Research Council (Project number 223254�AMOS).

Bibliography
1. BeyerK. Compressible potential �ows with free boundaries. Part I: Vibrocapillary equi-

libria /K.Beyer, M.Gunther, I. Gawrilyuk, I. Lukovsky, A.Timokha //ZAMM. � 2001. �
Vol. 81. � P. 261-271.

2. BeyerK. Variational and �nite element analysis of vibroequilibria /K.Beyer, M.Guen-
ther, A.Timokha //Comput. Methods Appl. Math. � 2004. � Vol. 4., No 3. � P. 290-323.

3. Blekhman I.I. Vibrational Mechanics. Nonlinear Dynamic E�ects, General Approach,
Applications / I.I. Blekhman. � Singapore: World Scienti�c, 2000.

4. BrandtE.H. Suspended by sound /E.H.Brandt //Nature. � 2001. � Vol. 413. � P. 474-475.
5. ChernovaM. Di�erential and variational formalism for an acoustically levitating drop

/M.O.Chernova, I.A. Lukovsky, A.N.Timokha // Journal of Mathematical Sciences. �
2017. � Vol. 220, Issue 3. � P. 359-375.

6. EberhardtR. Acoustic levitation device for sample pretreatment in microanalysis
and trace analysis /R. Eberhardt, B.Neidhart //Fresenius' J. Anal. Chem. � 1999. �
Vol. 365. � P. 475�479.

7. Fernandez J. The CFVib experiment: control of �uids in microgravity with vibrations
/ J. Fernandez, P. Salgado Sanchez, I. Tinao, J. Porter, J.M.Ezquerro //Microgravity Sci-
ence and Technology. � 2017. � Vol. 29, Issue 5. � P. 351-364.

8. Gavrilyuk I. Two-dimensional variational vibroequilibria and Faraday's drops / I.Gavri-
lyuk, I. Lukovsky, A.Timokha //ZAMP. � 2004. � Vol. 55. � P. 1015-1033.

9. KrasnoselskyM.A. Topological Methods in the Theory of Nonlinear Integral Equations
/M.A.Krasnoselsky. � New-York: Pergamon Press, 1964.

10. Lukovskii I.A. Stabilization of liquid-gas interface in the presence of interaction with
acoustic �elds in the gas / I.A. Lukovskii, A.N.Timokha //Fluid Dynamics. � 1991. �
Vol. 26, Issue 3. � P. 382-388.

11. MyshkisA. Low-gravity Fluid Mechanics: Mathematical Theory of Capillary Phenom-
ena /A.Myshkis, V.Babskii, N.Kopachavskii, L. Slobozhanin, A.Tiuptsov. � Berlin:
Springer-Verlag, 1987.

12. SanchezP.S. Interfacial phenomena in immiscible liquids subjected to vibrations in
microgravity /P. Salgado Sanchez, V.Yasnou, Y.Gaponenko, A.Mialdun, J. Porter,
V. Shevtsova // J. Fluid Mechanics. � 2019. � Vol. 865. � P. 850-883.

108



ON ACOUSTIC EQUILIBRIA

13. TimokhaA. In�uence of sound on the normal modes of oscillation of a liquid-gas interface
in a bounded volume /A.Timokha //Acoustical Physics. � 1993. � Vol. 39. � P. 187-189.

14. Ural'tsevaN.N. Solvability of the capillary problem II /N.N.Ural'tseva //Vestn. Leningr.
Univ. Math. � 1980. � Vol. 8. � P. 151-158.

15. WeberR.J.K. Acoustic levitation: recent developments and emerging opportunities in
biomaterials research /R.J.K.Weber, C.J. Benmore, S.K.Tumber, A.N.Tailor, C.A.Rey,
L.S. Taylor, S.R.Byrn //Eur. Biophys. J. � 2012. � Vol. 41, No. 4. � P. 397-403.

16. WesselnPh.S Acoustic pumping in cryogenic liquids /Ph.S.Wesseln //Design News. �
1967. � Vol. 22. � P. 96-101.

E.V.Tkachenko,
Institute of Mathematics of NAS of Ukraine,
3, Tereschenkivs'ka st., Kyiv-4, 01004, Ukraine;

A.N.Timokha,
Centre for Autonomous Marine Operations and Systems,
Department of Marine Technology,
Norwegian University of Science and Technology,
NO-7491, Trondheim, Norway.

Received 27.03.2019.

109


