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Ðåçþìå.Ó ðîáîòi ïðîâåäåíî àíàëiç ëîêàëüíî¨ çáiæíîñòi óçàãàëüíåíèõ áà-
ãàòîêðîêîâèõ àëãîðèòìiâ çà ¹äèíîãî íàáîðó êðèòåði¨â çáiæíîñòi. Òàêîæ
ðîçãëÿíóòî äåÿêi âiäîìi áàãàòîêðîêîâi ìåòîäè i îòðèìàíî òî÷íiøi îöiíêè
ïîõèáîê i áiëüøi ðàäióñè îáëàñòåé çáiæíîñòi. Ïðîâåäåíî ÷èñåëüíi åêñïåðè-
ìåíòè, ÿêi ïiäòâåðäæóþòü îòðèìàíi òåîðåòè÷íi ðåçóëüòàòè.

Abstract. We provide a uni�ed local convergence analysis of generalized
multistep algorithms under the same set of convergence criteria. Some known
multistep methods are also considered and tighter error estimates and larger
radii of convergence domain are obtained. Numerical experiments, which
con�rm the obtained theoretical results, are carried out.

1. Introduction

Let B1, B2 denote Banach spaces, Ω ⊂ B1 stand for an open and nonempty
set and U(z, r), Ū(z, r) be the open and closed balls in B1 respectively centered
at z ∈ B1 and of radius r > 0.

We are interested in obtaining a solution x∗ of equation

F (x) = 0, (1)

by using iterative algorithms, since the closed form of it is attainable only in
special cases. There is a plethora of applications from diverse disciplines that
using mathematical modeling can be written in the form of equation (1) [8,9,17].
But the convergence order of these algorithms is found using Taylor series with
higher than ones derivatives not appearing on the algorithm. This is a setback
restricting the applicability of algorithms. As an academic and motivational
example consider B1 = B2 = R, Ω =

[
−3

2 ,
3
2

]
, t∗ = 1 and de�ne function h on

Ω by

h(t) =

{
t3 ln t2 + t5 − t4, t ̸= 0

0, t = 0.

Then, we get h′′′(t) = 6 ln t2 + 60t2 − 24t + 22, so the third derivative is
unbounded on Ω. Hence, convergence results based on the third derivative (or
higher) cannot guarantee the convergence of the algorithm. That is why there
is a need for convergence results with as weak conditions on F as possible. In
particular, there is a need for a uni�ed study of multistep algorithms (MA) of
the form
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x−2 = x
(0)
−2, x−1 = x

(0)
−1, xi = x

(0)
i , i = −2,−1, ...,

x(0)n = φ(0)(x
(0)
n−1, x

(0)
n−2) = xn,

x(1)n = φ(1)(x(0)n , x
(0)
n−1) = x(0)n − φ̃(1)(x(0)n , x

(0)
n−1)F (x

(0)
n ),

x(2)n = φ(2)(x(0)n , x
(0)
n−1) = x(1)n − φ̃(2)(x(0)n , x

(0)
n−1)F (x

(1)
n ),

. . . (2)

x(m−1)
n = φ(m−1)(x(0)n , x

(0)
n−1) = x(m−2)

n − φ̃(m−1)(x(0)n , x
(0)
n−1)F (x

(m−2)
n ),

xn+1 = x(m)
n = φ(m)(x(0)n , x

(0)
n−1) = x(m−1)

n − φ̃(m)(x(0)n , x
(0)
n−1)F (x

(m−1)
n ),

n = 0, 1, 2, ...,

m is a given natural number and φ(j) : Ω × Ω → B1, j = 0, 1, 2, ...,m are
continuous operators related to F such that lim

n→∞
xn = x∗. A plethora of spe-

cializations of operators φ̃ lead to well studied algorithms (or new methods):
(1) m-step Newton's algorithm [1,17]:

φ̃(j)(x, y) = F ′(x)−1;

(2) m-step simpli�ed Newton's algorithm:

φ̃(j)(x, y) = F ′(x0)
−1;

(3) m-step Secant algorithm:

φ̃(j)(x, y) = [y, x;F ]−1;

(4) m-step Ste�ensen's-like algorithm:

φ̃(j)(x, y) = [x− λnF (x), x+ λnF (x);F ]
−1, λn ∈ R;

(5) m-step Kurchatov's algorithm [5]:

φ̃(j)(x, y) = [2x− y, y;F ]−1;

(6) m-step Stirling's algorithm:

φ̃(j)(x, y) = F ′(x− F (x))−1;

(7) m-step Newton's-like algorithm:

φ̃(j)(x, y) = A(x)−1, A : Ω → L(B1, B2).

Many other choices for the φ (or φ̃) functions are possible [2�4, 6, 7, 10�12,
15, 16]. Therefore it is important to study the local convergence of MA under
the same set of conditions. This is done in Section 2, where as applications and
the conclusions appear in Section 3 and Section 4, respectively.
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2. Local Convergence

It is convenient for the local convergence that follows in this section to �rst
de�ne some parameters and scalar functions. Set S = [0,∞). Let

ψ(j) : S × S → S be continuous and nondecreasing functions, j = 0, 1, 2, ...,m.
Consider functions gj : S → S de�ned as

gj(t) = ψ(j)(t, t)ψ(j−1)(t, t)...ψ(0)(t, t). (3)

Suppose equations

gj(t)− 1 = 0 (4)

have smallest solutions ρ(j) ∈ S − {0}, respectively. Set

ρ = min{ρ(j)}. (5)

We shall show that parameter ρ is a radius of convergence for MA. It follows
by these de�nitions that

0 ≤ gj(t) ≤ c < 1 (6)

for all t ∈ [0, ρ) and some c ∈ [0, 1).
The conditions (A) are needed:

(A1) There exist F : Ω → B2, Ω0 ⊆ Ω, φ(j) : Ω0 × Ω0 → B1 continuous
operators, and x∗ ∈ Ω0, such that F (x∗) = 0.

(A2) ρ
(j) given by (3) and (4) exist, j = 0, 1, 2, ...,m.

(A3) There exist functions ψ
(j) : S×S → S are continuous and nondecreasing

such that for each x ∈ Ω0, y ∈ Ω0

∥φ(j)(y, x)− x∗∥ ≤ ψ(j)(∥y − x∗∥, ∥x− x∗∥)∥y − x∗∥.

(A4) Ū(x∗, ρ) ⊂ Ω, where ρ is given in (5).
Next, the main local convergence result for MA is presented using the con-

ditions (A) and the introduced terminology.

Theorem 1. Suppose the conditions (A) hold. Choose x−2, x−1, x0 ∈ Ū(x∗, ρ)−
{x∗}. Then, sequence {xn} starting from x0 and generated by MA (2) exists,
remains in Ū(x∗, ρ) for each n = 0, 1, 2, ... and converges to x∗.

Proof. By the choice of x−2, x−1, x0, conditions (A1)− (A3) and (6) we have in
turn that

∥x(0)n − x∗∥ = ∥φ(0)(xn−1, xn−2)− x∗∥

≤ ψ(0)(∥xn−1 − x∗∥, ∥xn−2 − x∗∥)∥xn−1 − x∗∥ ≤ c∥xn−1 − x∗∥ < ρ,

∥x(1)n − x∗∥ = ∥φ(1)(xn, xn−1)− x∗∥

≤ ψ(1)(∥xn − x∗∥, ∥xn−1 − x∗∥)∥xn − x∗∥

≤ ψ(1)(ρ, ρ)ψ(0)(ρ, ρ)∥xn − x∗∥ ≤ c2∥xn−1 − x∗∥ < ρ,
. . .

∥xn+1 − x∗∥ = ∥x(m)
n − x∗∥ ≤ cm+1∥x0 − x∗∥ < ρ,

so xn+1 ∈ U(x∗, ρ) and lim
n→∞

xn = x∗. �
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Remark 1. (i) The condition F (x∗) = 0 is not needed to show the convergence
of sequence {xn} to x∗.

(ii) The convergence is shown to be only linear at this generality. But if iter-
ation functions are specialized as in the examples of the introduction, then the
computational order of convergence (COC) or the approximate computational
order of convergence (ACOC) [6] can be used given, respectively by

µ =

ln
∥xn+1 − x∗∥
∥xn − x∗∥

ln
∥xn − x∗∥
∥xn−1 − x∗∥

, for each n = 1, 2, ...,

µ0 =

ln
∥xn+1 − xn∥
∥xn − xn−1∥

ln
∥xn − xn−1∥
∥xn−1 − xn−2∥

, for each n = 2, 3, ....

Note that the computation of these parameters does not require high order
derivatives or even knowledge of the solution x∗ (in the case of µ0).

(iii) In the case of Newton's algorithm

∥F ′(x∗)−1(F ′(x)− F ′(x∗))∥ ≤ l0∥x− x∗∥ for all x ∈ Ω, l0 > 0
and

∥F ′(x∗)−1(F ′(y)−F ′(x))∥ ≤ l∥y−x∥ for all x, y ∈ Ω0 = Ω∩U(x∗, 1
l0
), l > 0.

Moreover, using the estimate

xn+1 − x∗ =

= −F ′(xn)
−1F ′(x∗)

∫ 1

0
F ′(x∗)−1

[
F ′(x∗ + θ(xn − x∗))− F ′(xn)

]
dθ(xn − x∗),

we see that

ψ(i)(t, t) =
lt

2(1− l0t)
.

Similar choices for the other algorithms listed in the introduction.
The old error bounds are

∥x(i+1)
n − x∗∥ ≤ en∥x(i)n − x∗∥,

whereas the new are

∥x(i+1)
n − x∗∥ ≤ ēn∥x(i)n − x∗∥,

where

ēn =
l∥x(i)n − x∗∥

2(1− l0∥x(i)n − x∗∥)
≤ en =

l1∥x(i)n − x∗∥
2(1− l1∥x(i)n − x∗∥)

and

ρN ≤ ρ1N ,
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since

l0 ≤ l1

and

l ≤ l1,

where l1 is the Lipschitz constant on Ω used in earlier studies [13,14].
(iv) Consider Schmidt-Schwetlick method (14) in [11] de�ned as xn, zn ∈ Ω,

for 0 ≤ i ≤ m− 1, n = 0, 1, . . . , and

x(0)n = zn,

x(i+1)
n = Ψ2,i+1(xn, xn−1) = x(i)n − [xn, zn;F ]

−1F (x(i)n ),

xn+1 = Ψ2,m−1(xn, xn−1) = x(m−1)
n , (7)

zn+1 = Ψ2,m(xn, xn−1) = x(m)
n .

Then, in Theorem 3.2 under the condition

∥F ′(x∗)−1([x, y;F ]− [u, v;F ])∥ ≤ K(∥x− u∥+ ∥y − v∥) (8)

for each x, y, u, v ∈ Ω, the radius

ρss =
1

5K

was found. But under our idea [6,8,9] the condition

∥F ′(x∗)−1([x∗, x∗;F ]− [x, y;F ])∥ ≤ K1(∥x∗ − x∥+ ∥x∗ − y∥)
for each x, y ∈ Ω was used (implied by (8)), and the radius

ρ1ss =
1

2K1 + 3K
≥ ρss,

K1 ≤ K

was given. But under our new technique a further enlargement can be found.
Indeed, let Ω0 = Ω ∩ U(x∗, 1

2K1
). Notice that

Ω0 ⊆ Ω.

Consider instead of (8) the actually needed condition

∥F ′(x∗)−1([x, y;F ]− [u, v;F ])∥ ≤ K̄(∥x− u∥+ ∥y − v∥)
for each x, y, u, v ∈ Ω0. Then, we have

K̄ ≤ K,

so, the radius is

ρ2ss =
1

2K1 + 3K̄
≥ ρ1ss.

These advantages are obtained under the same computational cost, since K̄ is a

specialization of K. Moreover, the error bounds on ∥x(i)n − x∗∥ become tighter,
since the ones in [11] are given by

∥x(i+1)
n − x∗∥ ≤ δn∥x(i)n − x∗∥,
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whereas in our setting

∥x(i+1)
n − x∗∥ ≤ δ̄n∥x(i)n − x∗∥,

where

δn =
K(∥xn − x∗∥+ ∥zn − x∗∥+ ∥x(i)n − x∗∥)

1−K1(∥xn − x∗∥+ ∥zn − x∗∥)
,

δ̄n =
K̄(∥xn − x∗∥+ ∥zn − x∗∥+ ∥x(i)n − x∗∥)

1−K1(∥xn − x∗∥+ ∥zn − x∗∥)
and

δ̄n ≤ δn.

(v) Similarly, we can extend the results given in [11] for the Kurchatov-
Schmidt-Schwetlick method (26) de�ned for each n = 0, 1, . . . and 0 ≤ i ≤ m−1,
xn, zn ∈ Ω

x(i+1)
n = Ψ4,i+1(xn, xn−1) = x(i)n − [zn, 2xn − zn;F ]

−1F (x(i)n ),

x(0)n = xn, zn+1 = Ψ4,m−1(xn, xn−1) = x(m−1)
n , (9)

xn+1 = Ψ4,m(xn, xn−1) = x(m)
n .

Then, in Theorem 3.5 in [11] under conditions

∥F ′(x∗)−1([x, y;F ]− [u, v;F ])∥ ≤ K(∥x− u∥+ ∥y − v∥)
and

∥F ′(x∗)−1([x, x;F ]− [y, 2x− y;F ])∥ ≤ L∥y − x∥2

for each x, y, u, v ∈ Ω, the radius

ρkss =
2

5K +
√
25K2 + 32L

and error bounds

∥x(i+1)
n − x∗∥ ≤ σn∥x(i)n − x∗∥

were given, where

σn =
K(∥x(i)n − xn∥+ ∥xn − x∗∥) + L∥xn − zn|2

1− 2K∥xn − x∗∥ − L∥xn − zn∥2
.

But if we consider the actually needed conditions

∥F ′(x∗)−1([x∗, x∗;F ]− [x, x;F ])∥ ≤ 2M0∥x∗ − x∥
and

∥F ′(x∗)−1([x, x∗;F ]− [y, y;F ])∥ ≤M1(∥x− y∥+ ∥x∗ − y∥),
then, we will have instead

∥x(i+1)
n − x∗∥ ≤ σ̄n∥x(i)n − x∗∥,

where

σ̄n =
M1(∥x(i)n − xn∥+ ∥xn − x∗∥) + L∥xn − zn∥2

1− 2M0∥xn − x∗∥ − L∥xn − zn∥2

12
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and
σ̄n ≤ σn,

since
M0 ≤ K

and
M1 ≤ K.

Moreover, the new radius is

ρ1kss =
2

2M0 + 3M1 +
√
(2M0 + 3M1)2 + 32L

≥ ρkss.

Notice that if M0 =M1 = K, then

ρ1kss = ρkss.

Otherwise, we have
ρ1kss > ρkss.

Examples, where the new constants are smaller can be found in the numerical
section and in [4�6,8,9].

3. Numerical Examples
Let us consider the nonlinear integral equation [6]

F (x)(s) = x(s)− 5s

∫ 1

0
tx(t)3dt, s, t ∈ [0, 1],

where x ∈ C[0, 1], F : C[0, 1] → C[0, 1]. This equation has two solutions:
x∗1(s) = 0 and x∗2(s) = s.

It is easy to see that the derivative and divided di�erence of operator F are
de�ned by formulas

F ′(x)h(s) = h(s)− 15s

∫ 1

0
tx(t)2h(t)dt,

and

[x, y;F ]h(s) = h(s)− 5s

∫ 1

0
t[x(t)2 + x(t)y(t) + y(t)2]h(t)dt,

respectively.
We have that

F ′(x)h(s)− F ′(y)h(s) = 15s

∫ 1

0
t(y(t) + x(t))(y(t)− x(t))h(t)dt,

[x, y;F ]h(s)− [u, v;F ]h(s) =

= 5s

∫ 1

0
t[(u(t)+y(t)+x(t))(u(t)−x(t))+(v(t)+y(t)+u(t))(v(t)−y(t))]h(t)dt.

Let's compute convergence radii of methods from Remark 1 for solution
x∗(s) = 0. Given the equations written above, we get

l1 = 15, l0 = 7.5, l = 2;

13
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K = 7.5, K1 = 5, K̄ = 0.75;

K = 7.5, L = 2.5, M0 = 2.5, M1 = 5.

Obtained results are shown in Table 1 and con�rm theoretical results.

Tabl. 1. The radii of converence domains

Multistep method Old radius New radius
Newton ρN ≈ 0.0444 ρ1N ≈ 0.1176

Schmidt-Schwetlick ρss ≈ 0.0267 ρ1ss ≈ 0.0308, ρ2ss ≈ 0.0816
Kurchatov-Schmidt-Schwetlick ρkss ≈ 0.0263 ρ1kss ≈ 0.0477

Next, we give the number of iterations for which an approximate solution is
obtained. To approximate an integral we use the trapezoidal rule. As result,
we obtain the following system of nonlinear equations:

ξi − 5hsi

(1
2
t0ξ

3
0 +

k−1∑
j=1

tjξ
3
j +

1

2
tkξ

3
k

)
= 0, i = 0, . . . , k,

where ξi ≈ x(si), si = ti = ih, i = 0, . . . , k, h = 1
k .

In Tables 2 and 3 there are number of iterations for such initial approximation
x0: x

I = (0.25, . . . , 0.25)T and xII = (10, . . . , 10)T . In the �rst case we get
x∗1(s) and in the second case � x∗2(s). Additional initial approximation x−1 was
computed by formula: x−1 = x0+0.0001. To stop the iterative process we used
the condition ∥xn+1 − xn∥ ≤ 10−10. In the trapezoidal rule k = 50.

Tabl. 2. The number of iterations for xI

Multistep method m = 1 m = 2 m = 3
Newton 5 4 3
Secant 6 5 4

Kurchatov 6 5 4

Tabl. 3. The number of iterations for xII

Multistep method m = 1 m = 2 m = 3
Newton 12 9 8
Secant 17 12 10

Kurchatov 13 10 8

In case if the initial approximation x0 is far from x∗, we have the advantage
of the multi-step methods. But it is advisable to use these methods with small
m.

14
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4. Conclusions

Local convergence analysis of the generalized multistep method for solving
nonlinear equation are provided. The convergence orders of some multistep
methods are established using the approach of restricted convergence regions.
The advantages of this approach are con�rmed in practice.
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