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A UNIFIED LOCAL CONVERGENCE STUDY
OF MULTISTEP ALGORITHMS

I. K. ARGYROS, S. M. SHAKHNO, H. P. YARMOLA

PE3IOME.Y poboti mpoBefieHO aHaJII3 JTOKAIBHOT 3012KHOCTI y3arajpHeHUX Oa-
raTOKPOKOBUX AJTOPUTMIB 3a equHOro Habopy kpurepiiB 30ikHOCTI. Takox
PO3IVISHYTO AesiKi BimoMi 6araTOKPOKOBI METOAM i OTPUMAHO TOYHINI OIfiHKHK
moxuboK 1 6ibi pagiycu obaacrett 36ixmocTi. IIpoBeierno ancensHi ekcepn-
MeHTH, fKi HiITBEPIKYIOTh OTPUMAHI TEOPETHYHI Pe3yIbTaTH.

ABsTRACT. We provide a unified local convergence analysis of generalized
multistep algorithms under the same set of convergence criteria. Some known
multistep methods are also considered and tighter error estimates and larger
radii of convergence domain are obtained. Numerical experiments, which
confirm the obtained theoretical results, are carried out.

1. INTRODUCTION
Let By, By denote Banach spaces, 2 C B stand for an open and nonempty
set and U(z,7),U(z,7) be the open and closed balls in Bj respectively centered
at z € By and of radius » > 0.

We are interested in obtaining a solution z* of equation
F(x) =0, (1)

by using iterative algorithms, since the closed form of it is attainable only in
special cases. There is a plethora of applications from diverse disciplines that
using mathematical modeling can be written in the form of equation (1) [8,9,17].
But the convergence order of these algorithms is found using Taylor series with
higher than ones derivatives not appearing on the algorithmn. This is a setback
restricting the applicability of algorithms. As an academic and motivational
example consider By = Bs = R, () = [—%, %], t* = 1 and define function h on
Q by

BInt? +t> —t4 t#£0

0, t=0.

Then, we get A" (t) = 6Int? + 60t> — 24t + 22, so the third derivative is
unbounded on €. Hence, convergence results based on the third derivative (or
higher) cannot guarantee the convergence of the algorithm. That is why there
is a need for convergence results with as weak conditions on F' as possible. In
particular, there is a need for a unified study of multistep algorithms (MA) of
the form

h(t) =
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T_o = x(f)%, T_q :x(f)%, T; :xz@, 1=-2,—1,...,

K = GO0, a0 =,

2 = oW 2 ) =2l — O 2 F ),

oD = DD, H0) o)~ FOED, o) D)

(2)
AP D0 G0 ) D gm0 ) ()
tnpr =2 = @M@ 20)) = 2D - g (@, o0 ) F (D),
n = 0,1,2,..,

m is a given natural number and go(j) QA xQ — By, j =0,1,2,...,m are

continuous operators related to F' such that le Tn = x¥. A plethora of spe-
n oo

cializations of operators ¢ lead to well studied algorithms (or new methods):
(1) m-step Newton’s algorithm [1,17]:

P9 (,y) = F'(x)7
(2) m-step simplified Newton’s algorithm:
PV (,y) = F'(wo) ™
(3) m-step Secant algorithm:
29 (w,y) = [y FI 7
(4) m-step Steffensen’s-like algorithm:
95(])(55’3/) = [SU - )\nF(fL‘)7aj + AnF(x);F]_lv An € R;
(5) m-step Kurchatov’s algorithm [5]:
P9 (w,y) = 22— y,y; FI 7
(6) m-step Stirling’s algorithm:
P (z,y) = F'(x - F(x))™"
(7) m-step Newton’s-like algorithm:
GV (,y) = A(2) ™", A:Q— L(By, By).

Many other choices for the ¢ (or ¢) functions are possible [2—4,6,7,10-12,
15,16]. Therefore it is important to study the local convergence of MA under
the same set of conditions. This is done in Section 2, where as applications and
the conclusions appear in Section 3 and Section 4, respectively.
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2. LocAl, CONVERGENCE
It is convenient for the local convergence that follows in this section to first
define some parameters and scalar functions. Set S = [0,00). Let
¢(j) 1.8 x § — S be continuous and nondecreasing functions, j =0,1,2,...,m.
Consider functions g; : § — S defined as

gi(t) = w9 (6, 00UV (1, ). (1, 1). (3)
Suppose equations
gj(t)—1=0 (4)
have smallest solutions p') € S — {0}, respectively. Set
p=min{p"}. (5)

We shall show that parameter p is a radius of convergence for MA. It follows
by these definitions that
0<gjt)<c<1 (6)

for all t € [0, p) and some ¢ € [0,1).

The conditions (A) are needed:

(A1) There exist F' : Q — By, Qy C Q, go(j) : Qo x Qo — By continuous
operators, and x* € Qg, such that F(z*) = 0.

(As) pY9) given by (3) and (4) exist, j = 0,1,2,...,m.

(As3) There exist functions 1) : §x S — § are continuous and nondecreasing
such that for each x € Qq,y €

le\P (g, 2) = 2| < D (ly —2*[I, & = 2" )|y — 2.

(Aq) U(z*, p) C Q, where p is given in (5).
Next, the main local convergence result for MA is presented using the con-
ditions (A) and the introduced terminology.

Theorem 1. Suppose the conditions (A) hold. Choose x_o,2_1,x0 € U(z*, p)—
{x*}. Then, sequence {z,} starting from xo and generated by MA (2) ewists,
remains in U(x*, p) for each n =0,1,2,... and converges to x*.

Proof. By the choice of x_s9,z_1, zo, conditions (A;) — (A3) and (6) we have in
turn that

0 * *
12 — 2*|| = | (zp_1, 2n_2) — 27|
< PO (|apy — 2*||, [|n—2 — 2*|)||2n_1 — 2*|| < c||lzn_1 —z*|| < p,
1 * *
|25 — 2*(| = oM (2, Tn1) — 27|
< PO ([l — 2|, |21 — || |&n — |

< W, )0 p, p)llzn — 2*|| < Ellan-1 — "]l < p,

|Zni1 — %] = l23" — 2| < ™z — 27| < p,
80 Tpt1 € U(z*, p) and lim z,, = z*. O
n—oo



I.K. ARGYROS, S. M. SHAKHNO, H.P. YARMOLA

Remark 1. (i) The condition F(x*) = 0 is not needed to show the convergence
of sequence {x,} to x*.

(ii) The convergence is shown to be only linear at this generality. But if iter-
ation functions are specialized as in the examples of the introduction, then the
computational order of convergence (COC) or the approzimate computational
order of convergence (ACOC) [6] can be used given, respectively by

Nz = 2|
_ *
w= Hilfn—flf*H’ foreachn=1,2,..,
=
[2n—1 — =¥
1 1 Tnt1 — @nl|
[zn — &n—1]]
= or eachn=2,3,....
Ho Hxn — xn—lH i f 3 Iy

In

|Zn—1 — Tn—2|

Note that the computation of these parameters does not require high order
derivatives or even knowledge of the solution x* (in the case of ).
(#i1) In the case of Newton’s algorithm

| (@) (' () — F'(2*))]| < lolla — 2| for all 2 €2, I > 0
and

|F'@) 1 (F(y) = F' (@) | < Uly—=]| for allz,y € Q9 = QOU(2*, 1), 1> 0.

Moreover, using the estimate

Tpy1 — =
1
_ —F’(a:n)_lF'(:B*)/O F/(z*)! [F’(x* FO0(an — 2Y)) — F’(zn)]dﬂ(:cn — ),

we see that

, It
Ot t) = ——.

Similar choices for the other algorithms listed in the introduction.
The old error bounds are

26+ — 27| < ) — 27|,
whereas the new are
|20+ — 2| < ) — a7,
where
e = hlla =)
21 —loflat) — ) ~ " 201l — 2|
and

PN S p}\[a

10
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since
lo<h
and
<k,
where 11 is the Lipschitz constant on Q used in earlier studies [13,14].

(iv) Consider Schmidt-Schwetlick method (14) in [11] defined as Ty, 2, € 2,
for0<i<m—-1,n=0,1,..., and

W=
xgH) = WUoiri(zn,2n—1) = xg) — [#n, 2n; F]_IF(JUS)),
Tpt1 = Vom—1(Tn,Tn-1) = x;m_l), (7)
Znt1 = Yom(an, 2n-1) = xglm).

Then, tn Theorem 3.2 under the condition
1F (%)~ ([, y; F) = [w, 03 FD|| < K([l& = ull + [ly — o)) (8)

for each x,y,u,v € Q, the radius

1
5K
was found. But under our idea [6,8, 9] the condition

1F/ (%)~ (", 2 F] = [,y F|| < Ka(l|l2* — ]| + [l2* = yl)
for each x,y € Q was used (implied by (8)), and the radius
1

2K + 3K

K <K

was given. But under our new technique a further enlargement can be found.
Indeed, let Qo = QN U(x*, 5-). Notice that

) m
Qp C Q.
Consider instead of (8) the actually needed condition
1F @) (93 F) — [, 05 FD < K =l + 1y — o)

Pss =

1
Pss = > Pss;

for each x,y,u,v € Qo. Then, we have

K <K,

so, the radius is
9K, + 3K = s
These advantages are obtained under the same computational cost, since K is a

2
pss_

specialization of K. Moreover, the error bounds on ng) — x*|| become tighter,
since the ones in [11] are given by

2§+ —2*|| < ball2) — 2,

11
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whereas in our setting

|2+ —2*|| < Gallz) — 2,

where A
5. B n = o]+ 1z — 2 + s — o))
= (e =+ o =)
5. Kl = a7l + lon = 7] + flan — 2]
1= Ki(flan =2+ [lan = 2*)
and

O < 0.

(v) Similarly, we can extend the results given in [11] for the Kurchatov-
Schmidt-Schwetlick method (26) defined for eachn =0,1,... and 0 <i < m—1,
Ty, 2n €

$1(1i+1) = \P4,i+1(l‘n7$n—l) = x%@) - [Zna 2xn — Znj; F]_IF(J"TLZ))’
2 = T, 21 = Va1 (@, vp1) = &Y, 9)
Tnt1 = Wam(Tn,Tn-1) = ngm)’

Then, in Theorem 3.5 in [11] under conditions
1F" (%) " ([, 93 F) = [, 0 FD| < K ([l —ull + [ly — o))
and
1F" (@)~ ([, 2 F) = [y, 22 — y; F])|| < Llly — ||
for each x,y,u,v € 0, the radius
_ 2
PR T 5K + VaBK? + 321

and error bounds

(i+1)

2+ — 27| < oullaf) — 27|

were given, where

K (25 = @ull + len — 2*]) + Lljen — 20’
1 —2K ||y — z*|| — L||xn — 2n|? '
But if we consider the actually needed conditions

1F" (")~ ([, 2% F] = [z, 25 F)|| < 2Mol|l2* — =

Op —

and
IF' ()" Y[z, 2% F] = [y, F)|| < Mi(llz = yl| + [|2* = yl)),
then, we will have instead
2 — 2% < G|zl — 2*],
where ‘
My (|8 = @l + |z — 7)) + Lljwn — 20
1 —2My||xy — x*|| — L||zp, — 20|?

Op —

12
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and
On < On,

since
My < K

and
M <K

Moreover, the new radius is

1 2
Pkss = 2 Pkss-

2Mo + 3M; + /(2My + 3M7)? + 32L
Notice that if Mo = M1 = K, then
pl{:ss = Pkss-
Otherwise, we have
pllfss > Pkss-

FEramples, where the new constants are smaller can be found in the numerical
section and in [4-6,8, 9].

3. NUMERICAL EXAMPLES
Let us consider the nonlinear integral equation [6]

1
F(2)(s) = a(s) — 5s /O te(t)3dt, 5.t € [0,1],

where z € C[0,1], F : C[0,1] — C[0,1]. This equation has two solutions:
xi(s) = 0 and x5(s) = s.

It is easy to see that the derivative and divided difference of operator F' are
defined by formulas

1
F'(2)h(s) = h(s) — 15 / Fo(£)2h(1)dt,
0
and .
[z, y: FJh(s) = h(s) — 5 /0 He(t)? + e(E)(t) + y(t)R(b)dr,

respectively.
We have that

1
F'(z)h(s) — F'(y)h(s) = 158/0 t(y(8) + =(8))(y(t) — x())h(t)dt,

[z, y; Fh(s) — [u,v; F]h(s) =

1
— 55 /0 E(u(t) +y(8) + (1) (u(t) —2(t)+ (0(8) +y(8) +u(®)) (w() —y(O)A(E)dt.

Let’s compute convergence radii of methods from Remark 1 for solution
x*(s) = 0. Given the equations written above, we get

=151 ="75,1=2;

13
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K=175 K =5, K =0.75;
K =75 L=25 My=2.5 M, =5.

Obtained results are shown in Table 1 and confirm theoretical results.

TABL. 1. The radii of converence domains

Multistep method Old radius New radius
Newton pNn ~ 0.0444 pn ~ 0.1176
Schmidt-Schwetlick pss = 0.0267  pl. ~0.0308, p2, ~ 0.0816
Kurchatov-Schmidt-Schwetlick | prss =~ 0.0263 p,lcss ~ 0.0477

Next, we give the number of iterations for which an approximate solution is
obtained. To approximate an integral we use the trapezoidal rule. As result,
we obtain the following system of nonlinear equations:

k—1
| 1 .
£ — 5hsi(§t0§8 +Y et 5@5,3) —0,i=0,....,k
=1

where & ~ x(s;), s =t; =ih, i =0,...,k, h = %

In Tables 2 and 3 there are number of iterations for such initial approximation
zo: ol = (0.25,...,0.25)7 and z/! = (10,...,10)”. In the first case we get
x7(s) and in the second case — x3(s). Additional initial approximation z_; was
computed by formula: x_; = £¢+0.0001. To stop the iterative process we used
the condition ||z,41 — o, < 10719 In the trapezoidal rule k = 50.

TABL. 2. The number of iterations for x!

Multistep method | m =
Newton 5
Secant 6
Kurchatov 6

TABL. 3. The number of iterations for a!!

Multistep method | m=1 m=2 m=3
Newton 12 9 8
Secant 17 12 10
Kurchatov 13 10 8

In case if the initial approximation xg is far from x*, we have the advantage
of the multi-step methods. But it is advisable to use these methods with small
m.

14
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4. CONCLUSIONS

Local convergence analysis of the generalized multistep method for solving
nonlinear equation are provided. The convergence orders of some multistep
methods are established using the approach of restricted convergence regions.
The advantages of this approach are confirmed in practice.
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