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ON THE METHOD OF FUNDAMENTAL SOLUTIONS
FOR THE TIME DEPENDENT DIRICHLET PROBLEMS

1. V. BORACHOK

PE3IOME. Mu posrismaemo HabamKeHe PO3B’A3yBaHH: HECTAIIOHAPHUX 3a-
naa ipixsie /s XBUJIBOBOTO PIBHSHHS 1 PIBHAHHS TEILIOIPOBLIHOCTL y IBOBU-
MIPHUX | TPUBUMIpDHUX IBO3B 3HMX 06aCTAX 33 METOIOM (DYHIAMEHTAIHLHUX
pose’askie (M®P). IleperBopenns Jlarrepa i meron I'yGosbra 3acTocoBani
HE3aJIeXKHO JIJIsi JUCKPeTr3allil BUXi/IHOT 3a/0a4l 110 4acoBiil 3MiHHIN /10 moCIi-
JOBHOCTI eJNTHUYHUX 3a7ad. B CBOIO Yepry CTamioHapHI 3a7adi IOBHICTIO
JUCKPETU30BAHO JI0 PEKYPEHTHOI CUCTEMH anre0paidHuX PiBHAHD, BAKOPUCTO-
Byiouu M®P. Hasenerno aiaropurm MeTomy, BUOIp TOYOK KOJIOKAIN! 1 zKepesa
I KOHKPETHUX BUIMAIKIB IDAHUIb, & TAKOXK PE3YJILTATH UHUCEIbHUX eKCIIe-
PUIMEHTIB, fKi MATBEP/KYIOTh 3aCTOCOBHICTH JAHOTO TILIXOTY.

ABsTrRACT. We consider the approximation of the solution of non-stationary
Dirichlet problems for the wave and heat equations in 2-dimensional and 3-
dimensional double connected domains, by the method of fundamental so-
lutions (MFS). The Laguerre transformation and the Houbolt method are
applied independently to reduce the initial problem by a time to a sequence
of elliptic problems. In turn, stationary problems are completely discretized
to a recurrent system of algebraic equations using MFS. The algorithm of
the method, the choice of collocation and source points for specific cases of
boundaries, as well as the results of numerical experiments, that confirm the
applicability of this approach, are provided.

1. INTRODUCTION
The method of fundamental solutions is one of the common-used ap-
proaches for numerical solving of the elliptic problems, see, for example, in [2,3,
10]. The case of the hyperbolic and parabolic problems is less studied. For that
class of problems a few studies already developed, using the Laplace transfor-
mation in time, finite difference approximations, Laguerre transformation with
a combination of method of the boundary integral equations or other methods,
see [7,8,12]. Also, there is a studies when the MF'S is directly applied (for heat

equation), without time transformation, see [16].

The non-stationary problems govern many important physical problems and
are widely used in different applications. The Dirichlet problem is one of the
classical well-posed problem which has owns application and commonly used
for generation of the input data for ill-posed problems, see [4,7]. Important
to have an efficient way of numerical solution for that problem. We build the
algorithm on the study [7].

Key words. Dirichlet problem; heat equation; wave equation; Laguerre transformation;
Houbolt method; method fundamental solutions.
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Let us consider the Dirichlet problem for the wave equation

1 0%u .

?@:Au in D x (0, 00),

u=fs on I'y x (0,00), £ = 1,2, (1)
0

872;('%7 O) = u(x’o) = 0 fOI" X E D,

where a > 0 is the given constant speed of sound, D is an annular domain
in R% d = 2,3, bounded by two simple closed non-intersecting boundaries I'y
(inner) and I'y (outer) with v the outward unit normal to these boundaries, fi
and fo are given smooth functions.

Similarly let’s consider Dirichlet problem for the heat equation

igItL:Au in D x (0,00),
u= fp on 'y x (0,00), £ =1,2, (2)

u(z,0)=0 for x € D,

where ¢ > 0 a given constant specifying the heat diffusivity and f1, fo and
domain D defined as for the wave problem.

We reduce the non-stationary Dirichlet problem to a sequence of boundary
value problems for elliptic equations, using either the Laguerre transformation
[9] or the Houbolt method [14]. The set of fundamental solutions is known, thus
it is possible to use the MFS without the need to transform the inhomogeneous
right-hand side to a homogeneous one, like it has been done in previous studies.
The solution of the elliptic problems is approximated by the linear combination
of fundamental solutions with unknown coefficients, which in turn are obtained
by the collocation method. In the end, we obtain the recursive system of linear
equations for the unknown coefficients.

An outline of the work is: in section 2 we apply the Laguerre transformation
and Houbolt method for time discretisation of the Dirichlet problem for the
heat and wave equations. MFS for the obtained sequence of elliptic problems is
developed in section 3. The definition of fundamental solutions and main steps
of the algorithm is provided in that section. In section 4 we show algorithm
of distribution of the source and collocation points for the MFS for specific
domains together with the some numerical results, that show the applicability
of the proposed approaches both for the wave and heat equations.

2. TIME DISCRETIZATION

In the section we use two approaches to reduce (1) and (2) to a sequence
of stationary elliptic Dirichlet problems. Let us start from the Laguerre trans-
formation, see [7,9].

2.1. Laguerre transformation. Recall the definition and the main result of
the Laguerre transform for our problems.
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Definition 1. The Laguerre transformation with respect to the time-variable
of an element u(z,t) has the following representation:

u(z,t) = kY up() Ly(xt), (3)
p=0

where Ly (t) = Y8 _, (}) (;t!)k is the Laguerre polynomial of order p ([1, Chapt.
22]), k > 0 is a given constant and the Fourier-Laguerre coefficients u,, are
defined as:

up(x) = /0 e "Ly (kt)u(x,t)dt, p=0,1,2,.... (4)

Theorem 1. The function u defined in (3) is a solution of the Dirichlet problem
for the wave equation (1) respectively the heat equation (2) provided that the
Fourier-Laguerre coefficients u,, p = 0,1,2,..., are the solution of the following
sequence of elliptic Dirichlet problems:

p—1
Aup — ’)/2up = Z Bp,mum in D, (5)

m=0
up = fop only, £ =1,2,
where
oo
fo) = [ L0 f@ )t (=12 =012,
0

with 4% = By and the coefficients Bp being: in the case of the wave equation:

By = %(p-i— 1), p=0,1,2,..., and in the case of the heat equation: [, = %,

p=0,1,2,... .

The approximation with respect to the time variable of the exact solution of
the Dirichlet problems is obtained as a partial sum of the representation (3),
that is limiting the value of p =0,1,2,..., N > 0.

2.2. Houbolt method. In another hand, we can use the finite difference meth-
ods for time discretization. A commonly used method is the Rothe method [7,8].
But in our work we approximate time derivatives using Houbolt method [14],
which is an unconditionally stable and second-order accurate linear scheme for
second-order equations; properties and comparison with various second-order
schemes are given in [11,15,17,18]. Thus, start developing from the wave
equation (1). The generic form of the Houbolt scheme is

B} 1
Xitot = 512 (2Xt+5t —5X; +4X_5 — Xt72§t>;

where X is a twice continuously differentiable function, X note the second
derivative of the function, ¢ — time interval, Xy x5t = X (¢t + két), k € N. To
start this method, knowledge of the initial condition Xg is required together
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with X_s5; and X_os;. Therefore, a separate procedure is needed for the starting
values; for an investigation of various initial strategies and consequences, see [6].
To apply the above discretisation to (1), we use the equidistant grid

tp=(p+3)h, forp=-3,-2,....N >0,
(6)

with h; = and N € N,

T
N +3’
where T' > 0 is the given final time. We approximate the solution u by the
sequence

up = u(-,tp,), p=-3,...,N. (7)
Using the above Houbolt scheme, the elements {u,} satisty
Aup = —5(2up — Sup—1 + 4up—o — up-3). (8)
a“h;

Applying the standard Euler scheme and initial conditions from (1), we obtain
an approximation of the first three elements of the sequence:

u_3 =u(-,0) =0,

U_og A U_3 + htaa:f(',()) =0,
U_ A~ U3+ 2ht?;:(., 0) = 0.
We note that (8) can be written as
Aup — yup = Brup_1 + Patp—2 + Baup_3, 9)
where
) 2 5 4 1

Y BO a2h?7 51 thtgv 52 thga an 55 th% ( )

Let us consider the application of the Houbolt method for the Dirichlet prob-

lem for the heat equation (2). For generating of the starting values we have to
0

assume that £($,0) =0, for x € D. Then, based on [13] coefficients 5, will
be as following:

11 3 3 1
7* = Bo

6(12]115’ ﬁl Cbzht7 ﬁQ 2a2ht7 A /83 3a2ht
In total, after applying the above time-discretisation to (1) or to (2), we get
the following sequence of elliptic Dirichlet problems.

(11)

Theorem 2. The function u approzimated in (7) is a solution of the Dirichlet
problem for the wave equation (1) when the coefficients u,, p =0,1,2,..., are
the solution of the following sequence of elliptic Dirichlet problems:

p—1
2 .
Auy — v up = g Bp—mUm  in D,
m=0
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with fop = fo(-,tp) for £ =1,2,p=0,1,...,N. The coefficients v, 1, B2, B3
for wave equation are defined in (10) and for heat equation — in (11), and

184)”'76]\/71:0-

3. METHOD OF FUNDAMENTAL SOLUTIONS
Elliptic Dirichlet problems, obtained by the Laguerre transformation (5) or
by the Houbolt method (12) has the same definition, the only difference is in
the calculation of the coefficients 3, and fr,, p = 0,1,...,N,¢ = 1,2. In that
section we will focus on (5). To build the MFS for approximating a solution
to (5), explicit expressions are needed for what is known as a fundamental
sequence. We recall such expressions in IR?, d = 2, 3.

3.1. 2-dimensional case. The results are recalled from [7]. The functions @,
with
@p(z,y) = Ko(vle = ylvp(le —yl) + Ka(vlz —yDwp(lz —yl), =7y (13)

for p=0,1,2,..., N, are a fundamental sequence of the elliptic equations (5)
in the case of planar domains.
The elements Ky and K are what is known as modified Bessel functions [1].

The polynomials v, and w), for p = 0,1,..., are given by
[5] [25]
vp(r) = D apamr™™ and wp(r) = Y apomirr®™ Y, wo =0,
m=0 m=0
with [g] the largest integer not greater than ¢. The coeflicients a, for p =
0,1,..., are obtained from the recurrence relations
ap70 = 1;
1
Gpp = _%Blap—l,p—l;
-1
1 k+1]° S
ap k = 277 {4 |:2:| Qp k+1 — zk: lﬁp—mam,k—l , k=p—-1,...,1
——

3.2. 3-dimensional case. In [8] shown that the functions ®, with
6*'}/‘$7y| .
Pp(z,y) = vaﬂl‘ —yl), z#y (14)

for p =0,1,2,..., are a fundamental sequence of the elliptic equations (5) in
the case of 3-dimensional domains.
The polynomials v, for p =0,1,..., are given by

p
Up(r) = Z apm?™",
m=0
where the coefficients a, for p = 0,1,..., are obtained from the recurrence
relations

apo = 1;
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- 1
Ap,p = _Q,Tpﬁlap—l,p—IS

~ 1
ap’kzm{k(k+lapk+1 Z ﬁp mamk 1} k:p—].,,].

m=k—1

In [4] for 2-dimensional domains and in [5] for 3-dimensional domains shown
that the sequence ®,, p=0,1,..., N are linear independent and dense.

3.3. MFS for the sequence of Dirichlet problems (5). The unknown so-
lution of the (5) is approximated by the linear combination of the fundamental
solutions, defined in (13) and in (14) for 2-dimensional and 3-dimensional do-
mains respectively. Thus

V4 n

up(2) ® U (2) = > Y ke ®@pom(@,yp), T ED (15)

m=0 k=1

for n > 0 with ®, given by (13) or by (14), and with coefficients a,; € R,
k=1,2,....,n,m=0,1,...,p, to be determined. The so-called source points
vk, k=1,2,...,n, are located outside of the domain D.

The coefficients o, in (15) is determined by collocating on the boundary of
the solution domain D using a set of so-called collocation points, namely from
a recurrent system of linear equations for p =0,1,..., N:

n p—1 n
> ap®o(@es, yk) = fep(@e) = D Y ok Ppom(Tej, Uk, (16)
k=1 =0 k=1

where n >0, j=1,...,n/2, £ =1,2,24 € I'y — selected collocation points.

There is no one way of selecting the source points. Since the domain D is
doubly-connected, source points have to be placed, according to [2], both in
the unbounded exterior region of D as well as in the bounded region enclosed
by I'1. The collocation points are evenly distributed on boundaries I'y, ¢ = 1, 2.
More about distribution of the source and collocation points will be noted in
numerical results for known representation of boundaries of D.

Thus the final solution of (1) and (2) based on Laguerre transformation (3)
and (15) is approximated by

u(x,t) = uNn(J: t) =

—KZL (kt) ZZakaI)p m (T, k), (x,t) € D x (0,00)

m=0 k=1

(17)

for N,n > 0 and a;,x — solution of the (16).
And in case of Houbolt method (9) for wave equation (1) we have:

u(z,t) = unp(z,tp) ZZamk(I)p m(T,yk), (x,t) € D x (0,00). (18)
m=0 k=1
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3.4. The algorithm of the MFS. The summarization of the main steps of
the numerical procedures for solving the Dirichlet problem for the wave (1) or
heat (2) equations is as follows:

— Initialization:
1). Select discretization parameters N > 0 — truncation of the se-
quence (5) or (12).
2). Select discretization parameters n > 0 — number of the collocation
and source point in MFS (15).
3). For the Laguerre transformation approach:
3.1) select scaling parameter £ in (3);
3.2) calculate the constants (8, p =0, 1, ..., N specified in the the-
orem 1, depends on type of the equation;
3.3) calculate the Laguerre transformation fy,, {=1,2, p=0, 1,
..., N, given in the theorem 1.
For the Houbolt scheme approach:
3.1) calculate the constants 3,, p =0, 1, ..., N specified in the the-
orem 2, depends on type of the equation;
3.2) calculate the functions f;,, £ = 1,2,p = 0,1,..., N, given in
the theorem 2.
4). Generate the source points y, and collocation points xy; for the
MFS (15).
5). Calculate the matrix in the linear system (16), where the fundamen-
tal solutions ®( for 2-dimensional domains are given in (13) and for
the 3-dimensional domains are given in (14).
— Tterative procedure (p =0,1,..., N):
1). Calculate the right-side vector in the linear system (16), where the
sequence of fundamental solutions ®,,, m = 0,1,...,p are given
in (13) and (14).
2). Solve the (16) and obtain coefficients ay, k= 1,...,n.
— Build the solution:
1). Using obtained coefficients oy, p = 0,1,..., N, k = 1,...,n build the
solution of the Dirichlet problem (1) or (2) by (17) for the Laguerre
transformation approach or by (18) for the Houbolt method.

4. NUMERICAL EXAMPLES

In this section we consider a few results of numerical experiments of finding
the solution of Dirichlet problem for the wave (1) and heat (2) equations in 2-
and 3-dimensional domains.
The concrete definition of the domain D is provided together with the algo-
rithm of the selection of the source and collocation points for the MFS.

4.1. Example 1 (Laguerre transformation for 2D case). Lets con-
sider the application of the Laguerre transformation approach for the Dirichlet
problem for the heat equation (2) with ¢ = 1 in 2-dimensional domain. The
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boundaries of the domain D has following representation (see Fig. la.):
I'y = {z1(t) = (0.6 cost,0.5sint), t € [0,27]},
Iy = {@2(t) = (cost,sint — 0.5 sin®t +0.5), ¢ € [0, 27]} .

For generating of the source points we generate an artificial boundary in the

05 -1 ° °

-1 -0.5 0 0.5 1 -2 -1

a) The domain D in Ex. 1 b) The distribution of the
Yk, Tej in Ex. 1

FiG. 1. Domain, source and collocation points for n = 32, used
in the Ex. 1

unbounded exterior region of the D and in the bounded region enclosed by I'y
and place evenly distributed source points y; on generated boundaries by the
next rule:

2xa(sk),  for even k,
Yk = (19)
0.5x1(sk), for odd k,
2
where s, = lk, for k =1,...,n. Note that n should be an even integer.
n
The collocation points are generated similarly:
~ ~ 4 .
xp; = x0(55), 55 = n+1j, (=1,2,j=1,...n/2. (20)

The distribution of the source and collocation points are given in Fig. 1b.
As the exact solution, we use the fundamental solution of the heat equation:

100 _Jz—=*?
—e 4t , (x,t) € D x(0,00), " =(0,4).
4rt

Then the Dirichlet data on the boundaries I'y is
fo(x,t) = teg(z,t), (x,t) €y x(0,00),1=1,2.

The Laguerre transformation of fy, £ = 1,2 is calculated exactly and is:

50 .
fop= ?q)p(x,x ), p=0,1,...,N.

Uey (T, 1) =

Scaling parameter « is equal to 1. The absolute errors |ueg(z,t) —unp(x,t)| of
the approximation of the solution (2) in the 2-dimensional domain D for test
points are given in Table 1.
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TABL. 1. Errors for the approximated solution in the domain

Din Ex. 1
r=(0,07)",t=1 r=(06,0)",t=2
N/n 8 16 32 8 16 32
0 |1.3e—01]|1.3¢—01|1.3e—01]3.5¢—01]3.5¢—01|3.5¢— 01
10 | 2.8¢—02 | 2.4e—02|2.3¢—02 | 3.4¢ — 02 | 1.0e — 02 | 9.9¢ — 03
20 | 2.0e — 02 | 1.6e — 02 | 1.5e — 02 | 9.0e — 03 | 2.4e — 03 | 2.3¢ — 03
30 | 8.7¢ —03|3.8¢c—03|3.1e — 03 | 8.0¢ — 03 | 1.6e — 03 | 1.5¢ — 03
40 | 7.7e — 03| 2.8¢ — 03 | 2.2¢ — 03 | 5.9¢ — 03 | 5.4e — 04 | 2.8¢ — 04
50 | 5.2¢ — 03 | 5.3¢ — 04 | 4.0¢ — 04 | 6.0e — 03 | 5.0e — 04 | 2.4e — 04

4.2. Example 2 (Houbolt scheme for 3D case). Let us consider the
application of the Houbolt scheme for the Dirichlet problem for the wave equa-
tion (1) with wave speed a = 10 in 3-dimensional domain. The boundaries of
the domain D has following representation (see Fig. 2a.):

I'y = {z1(0,¢) = 0.5(sin  cos ¢, sin @ sin ¢, cos 0), 0 € [0, 7], ¢ € [0, 27|}
and
Ty = {x2(0,¢) = p(0,¢)(sin 6 cos ¢, sin O sin ¢, cos b)), 6 € [0, 7], ¢ € [0,27]},
where p(6, ¢) = /0.8 + 0.2(cos 2¢ — 1)(cos 46 — 1).

a) The domain D in Ex. 2

b) The distribution of the
Yk, Tgj in Ex. 2

FiG. 2. Domain, source and collocation points for n = 32, used
in the Ex. 2

As in previous example, for generating of the source points we generate an
artificial boundaries and place evenly distributed points yi by the next rule:

2562(6/4:5 (;Sk))
Yk =
0.521(0k, ¢r), for odd k,

for even k,
(21)
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where

_ {5 B+
Gk e e

ﬁ:\/Z7 with {¢} =q¢—[q] for k=1,...,n.

The collocation points are generated similarly:

27—1
- - {]T}+1

wej =x4(05,0;5), O =1 =1

9

| | (22)
5=l

yfor £=1,2,j=1,...,n/2.
n

The distribution of the source and collocation points are given in Fig. 2b.
We assume that n = 262, where € € N,
The Dirichlet data on the boundaries I'y, £ = 1,2 is

fo(z,t) =tsint(z1 + 22 +23), onlyx(0,7), £=1,2.

The absolute errors |u4o,128(x,t) — unn(z,t)| of the approximation of the
solution (1) in the 3-dimensional domain D for test points are given in Table 2.
Note that for the current example exact solution is unknown, thus to test our
approach we use as the exact solution the numerical one for N = 40,n = 128
and the final time T is equal to 5.

TaBL. 2. Errors for the approximated solution in the domain

D in Ex. 2
r=(0,0.6,05)T,t=2 r=(0,0,7)",t=5
N/n 18 50 98 18 50 98
0 [23¢—01]19¢—01|1.8¢—01]|23e—01]|1.4e—01]1.3e—01
10 |87e—02 | 1.6e—02|2.4e—04|9.4e—02 | 6.1e — 02 | 2.2¢ — 03
20 | 6.5e —02|7.1e—03 | 1.2e—04 | 8.5e —02 | 9.3¢ — 03 | 1.1e — 03
30 | 6.5e—02|7.0e—03|3.7e—05|82e—02]|81le—03|3.8—04

Numerical results from both examples confirm the applicability of the pro-
posed approaches for the numerical solution of the time-dependent Dirichlet
problems.

5. CONCLUSION
MFS has been proposed for the numerical solution of the Dirichlet prob-
lem for the wave and heat equations in 2- and 3-dimensional planar bounded
domains. The original problem is reduced by the Laguerre transform in time
or by the Houbolt method to a sequence of elliptic Dirichlet problems. The
solution of the elliptic problems is approximated by the linear combination of
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the given fundamental sequence with source points evenly distributed outside
the solution domain. By collocating on the boundary of the solution domain,
recurrent linear systems are obtained for finding the unknown coefficients in the
MFS approximation. Numerical results are provided for both heat and wave
equations, which confirms the applicability of the proposed approaches.
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