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ON THE APPROXIMATION OF URYSOHN

OPERATOR ON A SYMMETRICAL INTERVAL WITH

BERNSTEIN-TYPE OPERATOR POLYNOMIALS

I. I. Demkiv, Ya.O.Baranetskij

Ðåçþìå. Ïðè çàñòîñóâàííi ïîëiíîìiâ Áåðíøòåéíà êðiì ñòàíäàðòíîãî
âèïàäêó [0, 1] ïðèðîäíî âèäiëèòè ñèìåòðè÷íèé âiäðiçîê [−1, 1], íà ÿêîìó
ïîëiíîìè Áåðíøòåéíà ðàíiøå ìàéæå íå âèâ÷àëèñÿ. ßñíî, ùî ñèìåòðè÷íèé
âiäðiçîê òiñíî ïîâ'ÿçàíèé ç ìiðêóâàííÿìè ïàðíîñòi i íåïàðíîñòi. Ó ðîáîòi
äëÿ îïåðàòîðà Óðèñîíà (F ), ùî çàäà¹òüñÿ íà ñèìåòðè÷íîìó âiäðiçêó ç
íåâiäîìèì ÿäðîì, ïðî âëàñòèâîñòi ÿêîãî ìè ìîæåìî ñóäèòè òiëüêè àíàëi-
çóþ÷è ðåçóëüòàò éîãî äi¨ íà áóäü-ÿêi ôóíêöi¨ ç äåÿêîãî êëàñó, áóäó¹òüñÿ
òà âèâ÷à¹òüñÿ îïåðàòîðíèé ïîëiíîì òèïó Ñ.Í.Áåðíøòåéíà, ÿêèé ç ðîñòîì
éîãî ñòåïåíÿ ÿê çàâãîäíî òî÷íî íàáëèæà¹ F .

Abstract. During the application of Bernstein-type polynomials, with the
exception of the generalized case [0, 1], it is natural to de�ne a symmetrical
interval [−1, 1]. Bernstein-type polynomials, de�ned on this interval, were
not much studied in the literature. It is clear that a symmetrical interval is
closely tied with the ideas on paired and unpaired functions. In this paper the
Urysohn (F ) operator is de�ned on a symmetrical interval with an unknown
kernel. Properties of it we can identify only by analyzing its e�ect on any
functions from a speci�c class. For such operator, a Bernstein-type polyno-
mial approximates F with arbitrary high accuracy, depending on polynomial's
degree, is built and studied.

1. Introduction
Functional approximation F : L1(0, 1) → ℜ1 on a continual set of nodes

xn(z, ξn) = x0(z) +
n∑

i=1

H (z − ξi) [xi(z)− xi−1(z)] , (1)

ξn = (ξ1, ξ2, . . . , ξn) ∈ Ωz
n = {zn : 0 ≤ z1 ≤ . . . ≤ zn ≤ 1}

is studied in multiple papers, e.g., see [1�12].
Let xi(z) ∈ Q [0, 1] , i = 0, 1, . . . be arbitrary �xed elements of the space

Q[0, 1] of piecewise continuous functions on a segment [0, 1] with a �nite number
of discontinuity points of the �rst kind. The set of such functions is called the
interpolant framework and H(t) is a Heaviside function.

In the works [1-4] research the approximation of Urison operator by Bern-
stein-type and Stancu-type polynomials, the works [5-7] study the polynomial
functional approximation. The works [8-12] are dedicated to integral continued
fractions.

Key words. Bernstein-type polynomials; symmetrical interval; continual set of nodes; com-
binatorial correlations.
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Let us consider the usage of a continual set of nodes during the approximation
of Urysohn operator with Bernstein-type polynomials.

2. On Bernstein-type polynomials

For functions f(x), continuous on the interval [0, 1] ⊂ R, we get standard
Bernstein-type polynomials

Bn(f, x) =

n∑
k=0

f(
k

n
)Ck

nx
k(1− x)n−k, n ∈ N

where x is a real variable, and Ck
n are binomial coe�cients

Ck
n =

(n
k
)
=

n!

k!(n− k)!
n ∈ N, k = 0, 1, 2 . . . , n, C0

0 = 1.

These polynomials are used usually for approximation of the function f(x)
(e.g., see [1-4]).

The work [1] considers the Urysohn operator

F (t, x(·)) =
∫ 1

0
f(t, z, x(z))dz (2)

with an unknown kernel f(t, z, x), the properties of which we can identify only
by analyzing its e�ect on any functions x(z) of a particular class. A situation
like this is sometimes called "grey box".

The task lied in building a relatively simple approximation to the operator
F , in our case, Bernstein-type operator polynomials, which with any growth of
its degree, would beyond doubt approximate F .

Let us assume that the following interpolation conditions are valid

F (t, xi(·)) =
∫ 1

0
f(t, z, xi(z))dz i = 1, n (3)

where

xi(z) =
i

n
H(z − ξ), ξ ∈ [0, 1], i = 1, n. (4)

Based on the known functions F (t, xi(·)), approximation to the Urysohn
operator (2.1) with an unknown function f(t, z, x(z)) needed to be built. Bern-
stein-type operator polynomials was taken for this approximation

Bn(F, x(·)) = F (t, 0)−
∫ 1

0

n∑
k=0

∂F (t, knH(· − z))

∂z
Ck
nx

k(z)(1− x(z))n−kdz. (5)

Let us introduce the following function (operator)

F1(t, z, x(·)) =
∂F (t, x(·)H(· − z))

∂z
= f(t, z, 0)− f(t, z, x(·)), (6)

and assume that

F1(t, z, x) ∈ C([0, 1]× [0, 1]× [0, 1]). (7)
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This paper proves the theorem about a uniform convergence and the speed
of convergence for constructed the approximations.

Afterwards, using (2.2) � (2.6) and the method of proof from [1-4], a number
of Harun Karsli works emerged, dedicated to the Bernstein-type polynomials
(see,e.g., [13-15]).

Apart from the standard case [0, 1], it is natural to de�ne a symmetrical
interval [−1, 1]. On this interval the Bernstein-type polynomials have been
insu�ciently studied in the scienti�c literature. It is clear that the symmetrical
interval is closely tied with the ideas on paired and unpaired functions which
are crucial for the analysis but not very natural on a standard interval [0, 1].

For the function f(x), which is continuous on the interval [a, b] ⊂ R, Bern-
stein-type polynomials are introduced using the following formula

Bn(f, x) =
1

(b− a)n

n∑
k=0

f(
(b− a)k

n
+ a)Ck

n(x− a)k(b− x)n−k, n ∈ N.

At the moment, we are interested in the case of the symmetrical interval
[−1, 1] which has its particulars (see [16]). The case of the symmetrical interval
is important for practical tasks. The structure of many functions manifests
itself more naturally on [−1, 1] than during their transfer on [0, 1].

According to the general de�nition, Bernstein-type polynomials for the func-
tion f ∈ C[−1, 1] are introduced using formula

Bn(f, x) =
1

2n

n∑
k=0

f(
2k

n
− 1)Ck

n(1 + x)k(1− x)n−k, n ∈ N. (8)

Additionally to the preceding de�nition (2.7), it is convenient to use an
equivalent formula

Bn(f, x) =
1

2n

n∑
k=0

f(1− 2k

n
)Ck

n(1− x)k(1 + x)n−k, n ∈ N

with the summation from the right boundary of the interval [−1, 1] instead of
the left one, as used in formula (2.7).

The basic transition between formulas is done by using equation Cn−k
n = Ck

n.

3. Task statement

We obtained the following problem. Let us consider the following Urysohn
operator

F (t, x(·)) =
∫ 1

−1
f(t, z, x(z))dz (9)

an unknown kernel f(t, z, x), the properties of which we can identify only by
analyzing its e�ect on any functions x(z) of a particular class.

The task lied in building Bernstein-type operator polynomial which with any
growth of its degree, would approximate F with arbitrary high accuracy.
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Let us de�ne interpolation conditions

F (t, xi(·)) =
∫ 1

−1
f(t, z, xi(z))dz i = 0, n

where continual set of nodes is de�ned by the formula

xi(z) = (−1 +
2i

n
)H(z − ξ), ξ ∈ [−1, 1], i = 0, n.

4. Approximation selection

Let us use the Bernstein-type operator polynomial for such approximation

Bn(F, x(·)) = − 1

2n

∫ 1

−1

n∑
k=0

f(t, z,
2k

n
− 1)Ck

n(1 + x(z))k(1− x(z))n−kdz. (10)

However, on of its items is an unknown function f(t, z, 2kn − 1), k = 0, n. Let
us de�ne them in the same way as in work [17]. We get

f(t, z,
2k

n
− 1) =

∂F (t, (2kn − 1)H(· − z))

∂z
+ f(t, z, 0),

which allows de�ning (3.1) as follows

Bn(F, x(·)) = F (t, 0)− 1

2n

∫ 1

−1

n∑
k=0

∂F (t, (2kn − 1)H(· − z))

∂z
×

× Ck
n(1 + x(z))k(1− x(z))n−kdz.

Let us introduce the following function (operator)

F1(t, z, x(·)) =
∂F (t, x(·)H(· − z))

∂z
= f(t, z, 0)− f(t, z, x(z))

and assume that

F1(t, z, x) ∈ C([−1, 1]× [−1, 1]× [−1, 1]) (11)

is true.

Theorem 1. Let the Urysohn operator (3.1) be such that the function-operator
F1(t, z, x(z)) built by it, satis�es condition (4.2), and let operator (3.1) be con-
sidered on compact Φ ⊂ [−1, 1]. Then

limn→∞ ∥Bn(F, x(·))− F (t, x(·))∥C[−1,1] = 0

uniformly relative to x(·) ∈ Φ, where Φ = {x(z) ∈ C[−1, 1] : −1 ≤ x(z) ≤ 1} .

Proof is obtained in the same way as in [1].
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5. Thoughts on even and odd functions

Let us further generalize the qualitative properties of Bernstein-type polyno-
mials re�ected in the paper [16] on Bernstein-type operator polynomials that
approximate the Urysohn operator.

Lemma 1. (see [16]). Let us take f ∈ C[−1, 1] with Bernstein-type polynomials
Bn(F, x), de�ned using formula (2.7). Then the following statements are true:

1) If f(−x) = f(x) for all x ∈ [−1, 1], then Bn(f,−x) = Bn(f, x), x ∈ R,
n ∈ N ;

2) If f(−x) = −f(x) for all x ∈ [−1, 1], then Bn(f,−x) = −Bn(f, x), x ∈ R,
n ∈ N.

The symmetrical interval [−1, 1] is suited naturally to the study of paired
and unpaired functions. It is logical to assume that polynomials (4.1) inherit

the properties of whether the function
∂F (t,( 2k

n
−1)H(·−z))

∂z is paired or unpaired.
This is truly so.
Property 1. Assuming that x(z) ∈ Φ = {x(z) ∈ C[−1, 1];−1 ≤ x(z) ≤ 1},

then, if
[
−∂F (t,(x(·))H(·−z))

∂z

]
is paired, then Bn(F, x(·))− F (t, 0) is also paired,

that is Bn(F,−x(·))− F (t, 0) = Bn(F, x(·))− F (t, 0).
Proof.

Bn(F,−x(·))− F (t, 0) =

= − 1

2n

∫ 1

−1

n∑
k=0

∂F (t, (2kn − 1)H(· − z))

∂z
×

× Ck
n(1− x(z))k(1 + x(z))n−kdz = {k = n−m} =

= − 1

2n

∫ 1

−1

n∑
k=0

∂F (t, (2(n−m)
n − 1)H(· − z))

∂z
×

× Cn−m
n (1− x(z))n−m(1 + x(z))mdz =

= − 1

2n

∫ 1

−1

n∑
k=0

∂F (t, (1− 2m
n )H(· − z))

∂z
Cm
n (1 + x(z))m(1− x(z))n−mdz =

= Bn(F, x(·))− F (t, 0).

The following property is proved in the same way.
Property 2. Assuming that x(z) ∈ Φ = {x(z) ∈ C[−1, 1];−1 ≤ x(z) ≤ 1},

then, if
[
−∂F (t,(x(·))H(·−z))

∂z

]
is unpaired, then Bn(F, x(·)) − F (t, 0) is also un-

paired.

6. Modified Temple formula

The needed formula �rst appeared in Temple's work [18] for standard Bern-
stein-type polynomials on [0, 1]. Modi�cation on [−1, 1] looks bulkier but will
be useful during the systematic study of Bernstein-type polynomials on the
symmetrical interval.
Property 3. Let x(z) ∈ Φ = {x(z) ∈ C[−1, 1];−1 ≤ x(z) ≤ 1} and for[

−∂F (t,(x(·))H(·−z))
∂z

]
exists (4.1) then
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Bn+1(F, x(·))−Bn(F, x(·)) =

= − 1

2n+1

∫ 1

−1

n∑
k=1

Qn,k(F )(1 + x(z))k(1− x(z))n−k+1dz

where

Qn,k(F ) =
∂F (t, ( 2k

n+1 − 1)H(· − z))

∂z
Ck
n+1−

−
∂F (t, (2kn − 1)H(· − z))

∂z
Ck
n −

∂F (t, (2(k−1)
n − 1)H(· − z))

∂z
Ck−1
n .

Proof.
Bn(F, x(·)) = F (t, 0)−

− 1

2n

∫ 1

−1

n∑
k=0

∂F (t, (2kn − 1)H(· − z))

∂z
× (1− x(z)) + (1 + x(z))

2
×

×Ck
n(1 + x(z))k(1− x(z))n−kdz =

= F (t, 0)− 1

2n+1

∫ 1

−1

n∑
k=0

∂F (t, (2kn − 1)H(· − z))

∂z
Ck
n×

×
[
(1 + x(z))k(1− x(z))n−k+1 + (1 + x(z))k+1(1− x(z))n−k

]
dz.

Let us split into two sums, and in the second one, transition to the numera-
tion through k from 1 to n+ 1. We get:

Bn(F, x(·))− F (t, 0) =

= − 1

2n+1

∫ 1

−1

n∑
k=0

∂F (t, (2kn − 1)H(· − z))

∂z
Ck
n(1 + x(z))k(1− x(z))n−k+1dz−

− 1

2n+1

∫ 1

−1

n+1∑
k=1

∂F (t, (2kn − 1)H(· − z))

∂z
Ck−1
n (1 + x(z))k(1− x(z))n−k+1dz.

Let us take addend k = 0 from the �rst sum, and addend k = n + 1 from
the second sum

Bn(F, x(·))− F (t, 0) =

= − 1

2n+1

∫ 1

−1

(∂F (t,−H(· − z))

∂z
(1− x(z))n+1+

+
∂F (t,H(· − z))

∂z
(1 + x(z))n+1

)
dz−

− 1

2n+1

∫ 1

−1

n∑
k=1

[∂F (t, (2kn − 1)H(· − z))

∂z
Ck
n+

+
∂F (t, (2(k−1)

n − 1)H(· − z))

∂z
Ck−1
n

]
×

×(1 + x(z))k(1− x(z))n−k+1dz.
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Thus, for Bn+1(F, x(·))− F (t, 0) we get

Bn+1(F, x(·))− F (t, 0) =

= − 1

2n+1

∫ 1

−1

n+1∑
k=0

∂F (t, ( 2k
n+1 − 1)H(· − z))

∂z
Ck
n+1(1+x(z))k(1−x(z))n−k+1dz =

= − 1

2n+1

∫ 1

−1

(∂F (t,−H(· − z))

∂z
(1− x(z))n+1+

+
∂F (t,H(· − z))

∂z
(1 + x(z))n+1

)
dz−

− 1

2n+1

∫ 1

−1

n∑
k=1

∂F (t, ( 2k
n+1 − 1)H(· − z))

∂z
Ck
n+1(1 + x(z))k(1− x(z))n−k+1dz.

Let us take the di�erence Bn+1(F, x(·))−Bn(F, x(·)), and we get the con�r-
mation of property 3.

Next, let us examine coe�cients Qn,k(F ). By using identity

Ck
n+1 = Ck−1

n + Ck
n

we get

Qn,k(F ) = Ck−1
n

(
∂F (t, ( 2k

n+1 − 1)H(· − z))

∂z
−

−
∂F (t, (2(k−1)

n+1 − 1)H(· − z))

∂z

)
−

−Ck
n

(
∂F (t, (2kn − 1)H(· − z))

∂z
−

∂F (t, ( 2k
n+1 − 1)H(· − z))

∂z

)
.

Now, let's use designations for divided di�erences

[f ;x1, x0] ≡
f(x1)− f(x0)

x1 − x0
.

It is easy to check that

Qn,k(F ) = − 2

n+ 1
Ck−1
n−1

([
∂F (t, x(·)H(· − z))

∂z
;
2k

n
− 1,

2k

n+ 1
− 1

]
−

−
[
∂F (t, x(·)H(· − z))

∂z
;

2k

n+ 1
− 1,

2(k − 1)

n
− 1

])
.

Let us move on to the divided di�erences of the second order

[f ;x2, x1, x0] ≡
[f ;x2, x1]− [f ;x1, x0]

x2 − x0
.
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We get

Qn,k(F ) = − 4

n(n+ 1)
Ck−1
n−1

[∂F (t, x(·)H(· − z))

∂z
;

2k

n
− 1,

2k

n+ 1
− 1,

2(k − 1)

n
− 1
]
.

When working with formulas Qn,k(F ) it is useful to take into account the
positioning of the dots

−1 ≤ 2(k − 1)

n
− 1 <

2k

n+ 1
− 1 <

2k

n
− 1 ≤ 1, k = 1, . . . , n

true for any n ∈ N.
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