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VERIFICATION OF THE HIGH ACCURACY SCHEME

TO SOLVE ADVECTION-DIFFUSION-REACTION PROBLEMS

I. I. Dyyak, Ya.G. Savula, Yu. I. Turchyn

Ðåçþìå. Ðîçãëÿíóòî ïî÷àòêîâî-êðàéîâó çàäà÷ó àäâåêöi¨-äèôóçi¨-ðåàêöi¨
ç âåëèêèì ÷èñëîì Ïåêëå. Çàïðîïîíîâàíî íîâèé àëüòåðíàòèâíèé âèñîêî-
òî÷íèé ïiäõiä äëÿ ÷èñåëüíî¨ àïðîêñèìàöi¨ ðîçâ'ÿçêó ìåòîäîì ñêií÷åííèõ
åëåìåíòiâ. Ðîçðîáëåíå ïðîãðàìíå çàáåçïå÷åííÿ ç ðåàëiçîâàíèì ìåòîäîì
ïåðåâiðåíî çà äîïîìîãîþ ÷èñåëüíèõ ðîçðàõóíêiâ. Öÿ ñõåìà çàñíîâàíà íà
çàñòîñóâàííi åêñïîíåíöiéíèõ çàìií, à ñàìå ïðÿìî¨ ó ïîñòàíîâöi çàäà÷i òà
çâîðîòíî¨ ó âàðiàöiéíié ïîñòàíîâöi ïiñëÿ ïîíèæåííÿ ïîðÿäêó äèôåðåíöiþ-
âàííÿ. Âèâåäåíî àíàëiòè÷íi ôîðìóëè äëÿ îá÷èñëåííÿ ìàòðèöü ìåòîäó
ñêií÷åííèõ åëåìåíòiâ ó ðàçi ëiíiéíî¨ äèñêðåòèçàöi¨. ×èñåëüíi ðîçðàõóí-
êè ïîêàçóþòü âèñîêó åôåêòèâíiñòü çàïðîïîíîâàíîãî ïiäõîäó, åêñïåðèìåí-
òàëüíî îòðèìàíèé ïîðÿäîê çáiæíîñòi ïiäòâåðäæó¹òüñÿ òåîðåòè÷íèìè îöií-
êàìè.

Abstract. The initial-boundary problem of advection-di�usion-reaction with
a large P�eclet number is considered. A new alternative high accuracy approach
for the numerical approximation of the solution by �nite element method was
proposed. We considered the problem of veri�cation the numerical accuracy
of the created software in which the proposed approach is implemented. This
scheme is based on applying exponential replacements, direct in the problem
formulation, and inverse in the variational formulation, after reducing the or-
der of di�erentiation. Analytical formulas for calculate matrices of the �nite
element method in case of linear discretization are derived. Numerical calcu-
lations show the high e�ciency of the proposed solution, theoretical results
are veri�ed by calculating the experimental order of convergence.

1. Introduction
Numerical modelling of mass transfer processes is an important area of re-

search and is used in biology, medicine, chemical engineering, ecology, hydrol-
ogy, mining, and others. It is worth noting that mathematical and computer
modelling of the process of substance transfer in complex environments [1], [2]
deserves special attention. In particular, these models are used to study the
problems of biology and medicine (mass transfer in living tissues), ecology (such
as the spread of pollution in the atmosphere, surface waters, groundwater,
the spread of harmful impurities), chemistry (chemical reactions), meteorology
(forecasting weather, climate change forecasting), etc.

The mathematical modelling of advection-di�usion-reaction (ADR) processes
has important applications in solving many problems of engineering and me-
chanics. This is especially actual during scienti�c researches in biomechanics

Key words. P�eclet number; advection-di�usion-reaction; mass transfer; �nite element
method.
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and medicine, e.g., mass transfer in coronary system, blood �ow, drug release
processes [3]. In many cases, these processes are characterized by a very high-
value advective component in the corresponding equations, the so-called prob-
lem of large P�eclet number. In this case, the solution of the ADR problem is
characterized by appearing boundary and inner layers, and applying the clas-
sical �nite element method (FEM) leads to the loss of stability.

To date, a large number of specialized numerical schemes have been devel-
oped to �nd an approximate solution of the problem with large P�eclet num-
bers [4], [5]. Among the most popular schemes are two approaches in the
�nite element method: grid thickening [6], [7], [8] and construction of higher-
order basis functions [9]. The most signi�cant result can be achieved by a
combination of these two approaches. However, the use of such schemes as,
for example, adaptive FEM [10], h- and hp-adaptive FEM [11], applying the
exponential basis [12], functions-bubbles in FEM [13], discontinuous Galerkin
method [14], [15], counter-�ow schemes [17], has some speci�cs. The use of ad-
ditional meshing points for spatial variables, building complicated basis func-
tions, solving some additional problems might seriously a�ect the accuracy,
and complicate the programming process. In addition to this, in the case of
non-stationary processes, an important task is to build a high accuracy sta-
ble numerical method, and then time-variable discretization might be simple.
Therefore, the construction and analysis of new alternative numerical schemes
for �nding approximate solutions of ADR problems with high P�eclet numbers
are important and motivated.

The main goal of this paper is to construct the new scheme of FEM applying
to the ADR problem with high P�eclet numbers, to perform the theoretical
research of its convergence properties. Implementing of these steps will ensure
the veri�cation of the developed software and validation of numerical scheme
which was proposed in [17]. The new scheme of application of the FEM to ADR
problems with a large P�eclet number has to have several advantages. First, the
method should give a high accuracy at a low numerical cost. Secondly, this
scheme has to do not require complicated construction of the grid of division of
the area, it's thickening, and the de�nition of additional nodes, and therefore it
has to be convenient to apply in the case of objects of complex shapes, as well as
contact problems. The simplicity of method programming and computational
costs are also important and useful.

2. Scheme of the Exponential Replacements
2.1. Problem description. We �nd such concentration c which satis�es the
ADR equation in the bounded limited area Ω with a Lipchitz boundary Γ

∂c

∂t
+ Pe (V · ∇c)−K∆c+ σc = f(x, t); x ∈ Ω, t ∈ (0, T ]; (1)

with initial condition

c(x, 0) = c0; x ∈ Ω̄; (2)

and boundary condition

K (ν · ∇c) + λc = ψ; x ∈ Γ, t ∈ (0, T ]. (3)
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In (1) Pe is a P�eclet number, V = (V1, V2) is a velocity vector with constant
values V1, V2, K - a di�usivity coe�cient, σ - a coe�cient of the reaction, λ - a
coe�cient of the mass transfer on the boundary Γ, c0 - an initial value of the
concentration in Ω, f = f (x, t) : Ω× [0, T ] → R, ψ = ψ (x, t) : Γ× [0, T ] → R
- functions of external sources in Ω, Γ, respectively, T - a �nal value of time
variable t and 0 < T ≤ ∞; ν = (l1, l2) - the vector of normal to the boundary
Γ. Coe�cients are positive, constant and dimensionless.

2.2. Exponential replacements. We proposed to use a special exponential
replacement in the formulation of the problem to eliminate the advection term
in the Equation (1). For this purpose let us apply in (1)-(3) the next replace-
ment [18], [21] :

c = u exp

(
Pe (V · x)

2K

)
. (4)

For further compactness, we introduce the denotation

EPe
def
= exp

(
Pe (V · x)

2K

)
;E−

Pe

def
= exp

(
−Pe (V · x)

2K

)
.

Then, considering the following expressions for derivatives:

∂c

∂xi
=

∂u

∂xi
EPe +

PeVi
2K

uEPe;

∂2c

∂x2i
=

(
∂2u

∂x2i
+
PeVi
K

(
∂u

∂xi
+
PeVi
2K

u

))
EPe;

∂c

∂ν
=

(
∂u

∂ν
+
Pe

2K
(V · l)u

)
EPe,

the problem statement (1)-(3) might be equivalent to the problem

∂u

∂t
−K (∆u) +

(
P 2
e

(
V 2
1 + V 2

2

4K

)
+ σ

)
u = f (x, t)E−

Pe
,x ∈ Ω, t ∈ (0, T ] ; (5)

u(x, 0) = c0E
−
Pe
; x ∈ Ω̄; (6)

βK
∂u

∂ν
+

(
βPe

2
(V · l) + λ

)
u = ψE−

Pe
, x ∈ Γ. (7)

In order to get the variation formulation let us introduce the space W ={
u ∈W

(1)
2 (Ω)

}
, multiply the initial condition (6) and equation (5) on some

function w ∈W , and integrate over Ω. We will get∫
Ω

∂u
∂twdΩ−K

∫
Ω∆uwdΩ+

(
P 2
e
V 2
1 +V 2

2
4K + σ

) ∫
Ω uwdΩ =

=
∫
Ω fwE

−
Pe
dΩ; t ∈ (0, T ] ,x ∈ Ω;

(8)

.

∫
Ω
u(x, 0)wdΩ =

∫
Ω
c0wE

−
Pe
dΩ; x ∈ Ω̄.

Let us apply Green's formula to the Laplasian operator in (8)∫
Ω

∂u
∂twdΩ+K

(∫
Ω∇u∇wdΩ−

∫
Γ

∂u
∂νwdΓ

)
+

+
(
P 2
e
V 2
1 +V 2

2
4K + σ

) ∫
Ω uwdΩ =

∫
Ω fwE

−
Pe
dΩ.

(9)
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According to the classical procedure of FEM, the next step might be a dis-
cretization by spatial variables and constructing iteration process by time vari-
able. However, in this case a new speci�c problem occurs. Taking into account
subintegral expressions in (9) on the left side and on the right side in case
of high P�eclet number it is obviously that system of linear algebraic equation
(SLAE) might have di�erent orders of the right and the left parts. This is due
to the last multiplier in integral expression in the right part of (9).

In this case the problem leads to the problem of �nding some speci�c co-
e�cient to solve SLAE numerically with high precision and this is another
numerically complicated task. Instead of this we propose to use the inverse
exponential replacement in (9) in order to balance its left and right parts

u = cE−
Pe
.

It should be noted that we carry out the inverse replacement after lowering
the order of di�erentiation in the subintegral di�usion expression. Thus, a direct
replacement was made in the problem statement, and the reverse one in the
variational formulation after the application of the Green's formula. Therefore,
the use of direct and inverse substitution does not lead to identical expressions.

Applying inverse replacement we get the following expression for the di�usion
component of term (9):

K

∫
Ω
∇u∇wdΩ = K

∫
Ω
∇c∇wE−

Pe
dΩ−

∑
i=1,2

PeVi
2

∫
Ω
c
∂w

∂xi
E−

Pe
dΩ; (10)

and taking into account that∫
Ω
v
∂u

∂xi
dΩ = −

∫
Ω
u
∂v

∂xi
dΩ+

∫
Γ
uvlidΓ, ∀u, v ∈W ;

for the last term in the right part of (10) we will get that

−PeVi
2

∫
Ω c

∂w
∂xi
E−

Pe
dΩ = PeVi

2

∫
Ω

∂c
∂xi
wE−

Pe
dΩ−

−PeVi
2

∫
Γ cwliE

−
Pe

− (PeVi)
2

4K

∫
Ω cwE

−
Pe
dΩ, i = 1, 2.

(11)

From the boundary condition (7) it is easy to make sure that

−K
∫
Γ

∂u

∂ν
wdΓ =

∫
Γ

(
Pe

2
(V · ν)

)
uwdΓ +

∫
Γ

λ

β
uwdΓ−

∫
Γ

ψ

β
E−

Pe
wdΓ.

Therefore, after applying the inverse replacement we will get that

−K
∫
Γ

∂u

∂ν
wdΓ =

∫
Γ

(
Pe

2
(V · ν)

)
wE−

Pe
dΓ + (12)

Finally, by combining expressions (8)-(12), we obtain the following varia-
tional formulation: to �nd such weak solution c (x, t) ∈ L2

(
W 1

2 (Ω) ; 0, T
)
that

satis�es {
m(c′, w) + a(c, w) = l(w) ∀t ∈ (0, T ];

m(c(0)− c0, w) = 0 ∀w ∈W,
(13)

a(c, w) = K
∫
Ω∇c∇wE−

Pe
dΩ+

∫
Γ

λ
βwE

−
Pe
dΓ+

+
∑

i=1,2
PeVi
2

∫
Ω

∂
∂xi
wE−

Pe
dΩ+ σ

∫
Ω cwE

−
Pe
dΩ;

(14)
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l(w) =

∫
Ω
fwE−

Pe
dΩ+

∫
Γ

ψ

β
wE−

Pe
dΓ.

Thus, the use of exponential substitutions leads to the appearance of ex-
ponential weights in sub-integral expressions, with both sides of the integral
equation. In addition, there is a halving in the constant factors of the advec-
tive term, compared with the use of classical exponential weights.

2.3. Discretization. In proposing to conduct theoretical research about con-
vergence and the order of convergence of the proposed scheme, next step is
a spatial discretization of the problem. For this, we propose to use a spatial
discretization based on linear basis functions. In case of the initial-boundary
value plane problem, for some parameter of meshing h ∈ R, let us introduce a
�nite-dimensional subspace Wh ⊂W of dimension N with a linear basis

{
φh
i

}
,

and use a semi-discrete representation

ch(x, t) =
N∑
j=1

cj (t)φ
h
j (x) . (15)

Thus, from (13) we get its approximate formulation{
m(c

′
h, wh) + a(ch, wh) = l(wh); ∀wh ∈Wh;

m(ch (0)− c0, wh) = 0.
(16)

Then, taking the approximate solution (15) into (16), and, by the Galerkin
method, substituting the basic functions

{
φh
i

}
instead of arbitrary functions

wh, we get the Cauchy problem for the ODE{
MC ′ (t) +AC (t) = L (t) , t ∈ (0, T ] ;

MC (0) = P,
(17)

where

mij = m
(
φh
i , φ

h
j

)
; aij = a

(
φh
i , φ

h
j

)
; li (t) = l

(
φh
i

)
; pi = m

(
c0, φ

h
i

)
;

M = {mij} ;A = {aij} ;C (t) = {Ci (t)} ;L (t) = {li (t)} ;P = {pi} .
By using the Crank-Nicolson scheme to sample the time variable in a step

δ = tj+1 − tj , we obtain the following one-step recurrent scheme in terms of
increments ∆C = Cj+1 − Cj :{

M∆+ 1
2δA∆C = δF j+ 1

2 − δACj ,

MC0 = P.
(18)

It should be noted that the scheme of applying exponential replacements
in FEM has a computational feature. The coe�cients of corresponding SLAE
consist of sums of integrals, which contain exponential multipliers in integrands.

Therefore, analytical formulas for calculating these integrals are derived. As
an alternative, we recommend calculating integrals using special IOST quad-
rature with high orders of convergence. This quadrature is based on Gaussian
quadrature, described and tested on exponential functions in [19], [20]. This
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might be very useful for any order of basic functions in FEM, not only linear
one.

On the other hand, this scheme does not require complicated construction of
the grid of division of the area, it's thickening, and the de�nition of additional
nodes, and therefore it is convenient to apply in the case of objects of complex
shapes.

3. Numerical results and verification

A number of numerical experiments were conducted to �nd approximate
solutions of the ADR problems using the exponential replacements scheme in
the FEM. For this goal, C# high-level software was created on the base of
object-oriented techniques.

3.1. Convergence. We consider the stationary two-dimensional case of the
ADR problem and compare the results obtained with classical FEM and the
exponential replacements scheme in FEM.

The area Ω is de�ned as a single square and on its boundary Γ a homogeneous
Dirichlet condition is speci�ed. Coe�cients are set as the following:

Pe = 100,K = 1, V1 = 1, V2 = 1, σ = 1, f = 1; 0, 1[]

Fig. 1. Approximations by linear FEM (A) and the scheme of
exponential substitutions (B)

Number of triangular �nite elements on Figure 1 (A), (B)N = 300. As can be
seen from the Figure 1 (A) with taking high P�eclet number, the approximation
loses stability and oscillation appears in the upper right corner of the area Ω.
It is known that the thickening of the grid does not give the desired result for
the approximate solution. On the other hand, as can be seen from Figures 1
(B), the proposed exponential replacements scheme in FEM overcomes the
disadvantage of the loss of approximation stability. Oscillation does not occur;
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the approximation is smooth and stable with the increase in the number of �nite
elements. The appearance of the approximations corresponds to the physical
interpretation of the ADR process.

3.2. Stability. The high accuracy of the proposed scheme is very useful, in
particular, in the case of �nding an approximate solution of the nonstationary
ADR problem, as it provides stability of approximation by spatial variables.
In this numerical experiment, the Crank-Nicolson scheme (18) is used. For
further analysis of the approximation behaviour and stability of the proposed
scheme, we consider the graphs of changes in concentrations with increasing
time variable at a �xed point in the region.

Fig. 2. Changes of concentrations in time at �xed points for
one-dimensional (A) and two-dimensional (B) non-stationary
ADR problems

Figure 2 shows graphs of changes in the desired concentration over time at
�xed points in the region for one-dimensional (A) and two-dimensional case
(B). Figure 2 (A) demonstrates plots of approximate solutions for di�erent
P�eclet numbers and di�erent steps over the time variable. Curve 1 corresponds
to Pe = 70, Curve 2 - to Pe = 100, and Curve 3 - to Pe = 150. Number of
�nite elements n = 128. As can be seen from this graph, with the decreasing
of the step by the time variable the approximate solutions are stable. With
the growth of the time variable, the process becomes stationary. It is also
worth noting that the maximum values of the desired concentration at the
point x = 0.875 decrease with increasing P�eclet number. The numerical result
corresponds to the nature of the process, as well as the fact that with an
increasing number Pe, numerical solutions reach stationary behaviour faster.
Figure 2 (B) demonstrates the plots of approximate solutions for di�erent P�eclet
numbers at a �xed point P = (0.83, 0.83) of the region Ω. Curve 1 corresponds
to Pe = 50, Curve 2 - to Pe = 70, and Curve 3 - to Pe = 100. The initial and

72



VERIFICATION OF THE HIGH ACCURACY SCHEME ...

boundary conditions are set to zero. The coe�cients and the right part are
chosen as follows:

K = 1, V1 = V2 = 1; σ = 1, f(t) = 1− e−t.

The step by the time variable δ = 0.05, number of �nite elements N = 308.
Figure 2 (B) shows that with the increase of the advection coe�cient, the max-
imum of the solution decreases, and the process degenerates into a stationary
one faster, which corresponds to the nature of the phenomenon. It is worth
noting the high stability of approximations at a �xed point; the graphs in all
three cases are de�nitely smooth.

Results show that the approximations are smooth, stable, no oscillation oc-
curs. Since the scheme of exponential replacements proposed in this paper has
high accuracy, the error does not accumulate when discretizing over the time
variable.

4. Conclusions

This work was devoted to the development of the new scheme of applying
FEM to the singular-perturbed problems of ADR. The formulation of the ini-
tial boundary value problem of ADR in an incompressible medium has been
considered. The applying scheme of ex ponential replacements has led to a
modi�cation of the ADR variational problem in comparison with the classical
approach.

We carried out the theoretical studies regarding the existence and uniqueness
of the solution of the weak formulation of the problem, as well as of the order
of convergence of the proposed method. A comparison with a priori estimates
of the error using the classical FEM was done and the signi�cant advantages of
the exponential replacement method have shown. We described the application
of this method to the initial-boundary-value problem of ADR, as well as time-
domain sampling according to Crank-Nicolson schemes. Numerical calculations
have shown the high e�ciency of the proposed method, and veri�cation by cal-
culating the experimental order of convergence of the exponential replacement
scheme has con�rmed the results of theoretical studies.

The obtained theoretical results and the results of numerical experiments
presented in the paper make it possible to state that the developed numerical
scheme and implemented software satis�es the veri�cation requirements.
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