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ON SOLUTION OF THE INITIAL-VALUE PROBLEM
FOR HOMOGENEOUS WAVE EQUATION WITH DYNAMIC
BOUNDARY CONDITION IN WEIGHTED LEBESGUE SPACES

A.R.HLovA, S. V. LITYNSKYY, YU. A. MUZYCHUK, A. O. MUZYCHUK

PE3IOME. Po3risgmyTo mo4aTkoBo-KpaiioBy 3a/1a9y I OHOPITHOTO XBUIHO-
BOI'O DIBHSIHHS 3 JUHAMIYHOIO KPafl0BOIO YMOBOIO y TPHMBHUMIPHIN 33 IIPOCTO-
POBUMH KOOpAWHATAMH 00JACTI 3 JIMIMUATIEBOK KOMIAKTHOK Mexker. i
TEOPETUYIHUX JOC/TIIKEeHb BBEIEHO MOTPiOHI GYHKINHHI TPOCTOPH, 30KpeEMa
Barosi upocropu Jlebera i CobosieBa, Ta BU3HAUEHO OLIEPATOPU CJILY 1 B3ATTS
HOPMAaJBbHOI HoximHol y mux npoctpax. KpiM Toro, noBeneHo nedKi BAaCTHBOC-
Ti manmx omeparopis. Jami chopMymp0BaHO O3HAYEHHS CHUIBHOTO PO3B’A3KY
II0YATKOBO-KPaioBOi 3a/1a4i Ta BiAIOBiAHI T€OpeMH IIPO ICHYBAHHS 1 €IUHICTD
i1 po3B’si3Ky. st moBeIeH s TUX TeOpeM BUKOPUCTAHO TepeTBOpeHHs Jlamia-
ca BeKTOpo3HavnHux GyHKIH. 3 H0ro 0mOoMOroI0 eBOIONITHA 3a1a4a 3BeIeHa,
JI0 eKBiBaJeHTHOI KpafoBol 3a/1a4l /s eJIITUYIHOTO PIBHAHHSI.

O6rpyHTyBaHHS OCHOBHUX PE3Y/BTATIB MOJAHO Y BUTJIAI JEKITBKOX MTPO-
mixkuux eramiB. CrodaTKy JIOBEIEHO €IUHICTH CHUJIBLHOTO PO3B’A3KYy 3ajadi,
TiCJIST 9OTO PO3IJITHYTO €KBiBAJIEHTHY i TOCTiAXKeHo 11 KopekTHiCTh. Ha 3aBep-
MATLHOMY €Talll JOBEIEHO ICHYBaHHs PO3B’ I3KY €BOJTIONIMHOI 33,/1a4i 1 328 710-
IOMOTOI0 TIEpeTBOPeHHs Jlamraca 3HaeHo oro 300parKeHHs y BLAIOBITHIX
dyHKIIHUX TPpOCTOPaX.

ABSTRACT. Initial-value problem for homogeneous wave equation with dy-
namic boundary condition is considered in three-dimensional by spatial vari-
ables domain with Lipschitz compact surface. Required functional spaces are
introduced for theoretical researches, in particular weighted Lebesgue and
Sobolev spaces, and the trace and normal derivative operators are defined in
these spaces. In addition, some properties of these operators are proved. Then
the definition of a strong solution to the initial-value problem and correspond-
ing theorems on the existence and uniqueness of the solution are formulated.
To prove these theorems the Laplace transform of vector-valued functions is
applied. By using it, evolutionary problem is reduced to equivalent boundary
value problem for elliptic equation.

The justification of main results is demonstrated in the form of several in-
termediate stages. At first the uniqueness of the strong solution to the problem
is proved, then the equivalent problem is considered and its correctness is ex-
plored. At the final stage the existence of the solution to the evolutionary
problem is proved and its image is found in corresponding functional spaces
by applying the Laplace transform.

Key words. initial-value problem for wave equation; dynamic boundary condition; gen-
eralized solution; weighted Lebesgue and Sobolev spaces; Laplace and Laguerre transforms;
boundary integral equations; strong solution.

76



ON SOLUTION OF THE INITIAL-VALUE PROBLEM ...

1. INTRODUCTION
Let © be a domain (bounded or unbounded) in R™ ( n > 2) and let I" be
a boundary of Q. We assume that I' is a Lipschitz compact surface and v(x)
is a unit vector of outer normal to this surface at point x € I'. We denote
Ry :=(0,00), Q:=Q xRy and ¥ :=T x R,.
We consider the following initial-value problem: find a function wu(zx,t),
(x,t) € Q, which satisfies (in a certain sense) the wave equation

Ru—Au=0 in Q, (1)
homogeneous initial conditions
u(-,0) =0, Jwu(-,0)=0 in Q, (2)
and dynamic boundary condition
Ou+bdu=g on X, (3)

where ¢ is a function given on X, b > 0 is a function given on I', 9, and J,
denote time and normal derivatives respectively, A is the Laplace operator.

Hereinafter, we call this problem (HD).

The research of initial-value problems for the wave equation has a rich history
(see, for example, monographs [8,12,15,22,24]). However, the development of
effective methods for numerical solution of such problems still remains an ac-
tual problem, since they usually require significant amount of computational re-
sources. This particularly concerns the problems in three-dimensional domains
with complex geometry and problems with complicated boundary conditions.

The mentioned problems can be conveniently considered in functional spaces
that consist of functions of a real variable (the time variable) with values in
corresponding Hilbert spaces. The advantage of such an approach is a sim-
ple algorithm of integral transformations by time variable for the purpose of
transition to the equivalent elliptic problems that are well explored from both
theoretical and practical viewpoints. In particular, a new approach was founded
in papers [1,2] that combines the Laplace transform and integral representa-
tions of solutions of corresponding elliptic boundary value problems and leads
to boundary integral equations (BIEs). Examples of the application of the
Laplace transform for investigating the existence and uniqueness of the solu-
tion of different evolutionary problems can be found in [8, section XVIJ.

Unlike theoretical researches, the application of the Laplace transform in
practice is a complicated process because of the resource-intensive inverse trans-
form. Therefore, special approaches are used to set dependency of the solutions
to evolutionary problems on time variable, in particular, based on functional
convolutions. Here we note the so-called convolution quadrature method [18].
It was further developed in papers [3,13,24]. Now this approach is widely used
in numerical modelling (with the respective theoretical justification) of different
kinds of evolutionary processes (see, for example, [4,11,23,24] and references
there).

The Laguerre transform is closely coupled with the Laplace transform. In
particular, they both have a common domain of definition. On the one hand, it
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allows us to use the Laplace transform for theoretical researches when solving
evolutionary problems, e.g., for investigation of the existence and uniqueness
of the solution. However, the Laguerre transform is more constructive for find-
ing numerical solutions to mentioned problems because of the simple inverse
transformation in terms of computational resources. As a result, it allows us to
effectively use the advantages of BIEs method for problems in three-dimensional
domains by spatial variables. Examples of the application of the method that
combines the Laguerre transform and BIEs for such problems can be found
in [5,9,16,17,20,21] and references there.

The results of numerical experiments presented in [10] demonstrate an appli-
cation of the aforementioned combined method for solving initial-value prob-
lems with dynamic boundary conditions. Notice that in this case, with the
help of the Laguerre transform, it is possible to get rid of the time derivative
of the trace of the solution on the boundary and obtain boundary conditions
containing only the trace and the normal derivative operators.

The goal of this article is to investigate the existence and uniqueness of the
strong solution of the initial-value problem (1) — (3) in the weighted Lebesgue
spaces and show its continuous dependency on input data of the problem. One
of the main research methods here is the Laplace transform. Due to the connec-
tion of this transform with the Laguerre transform [19] in specified functional
spaces, obtained results form a basis for justification of the Laguerre transform
and BIE combination for numerical solution of the problems mentioned above.

The main definitions and terms are introduced in section 2. The definition
of a strong solution to the problem and the formulation of theorems about
its existence and uniqueness are given in section 3. A direct proof of these
theorems is proposed in section 5 after clarifying auxiliary facts about the
Laplace transform of vector-valued functions in section 4.

2. MAIN DEFINITIONS AND TERMS

At first, we consider required functional spaces. Let X be a complex Hilbert
space with the inner product (-,-)x and the induced norm || - || x. Elements of
the space X are called vectors. We denote by D(R) a linear space that consists
of infinitely differentiable finite functions ¢ : R — C. We say that the sequence
{¢n} converges to ¢ in D(R) if and only if bounded interval I C R such that
supp ¢, C I exists for every n € N and gaglm) = (™) when n — oo on I for
arbitrary m € NU {0}. By D'(R; X) we mean a linear space that consists of
linear continuous mappings F' : D(R) — X,,, where X,, is a linear space X
with a weak topology. We denote by (F,y)p(r) the action F' € D'(R; X) on
¢ € D(R). Elements of the space D'(R; X) are called generalized vector-valued
functions. For every function F' € D'(R; X) and an arbitrary natural m we
define derivative F(™) according to the rule

(F™ o)pmwy = (~1)™(F, ™ )pr), ¢ € D(R).

Obviously, generalized vector-valued functions are infinitely differentiable.
Let LL .(R; X) be a linear space of measurable functions f : R — X such
that for arbitrary bounded interval I C R restriction of the function f on [
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belongs to L'(1; X), i. e. [} || f(t)|lx dt < co. As we can see, for every function
f € Li (R; X) mapping Fy : D(R) — X defined according to the rule

(Fy, )pe) = /R f(H)p(t)dt, ¢ € D(R), (4)

is an element of the space D'(R; X).

Mapping of the space L (R;X) into D'(R;X) defined by the rule (4) is
injective. That allows us to identify L{ (R; X) with its image in D'(R; X) (this
image is a subspace). Due to this, we consider that L .(R; X) C D'(R; X).

Let’s denote by D'(Ry; X) a subspace of the space D'(R; X) that consists
of such elements F' that supp F' C [0, 4+00), i. e.

FeD(Ry;X) & FeD (R X) and (F, ) pw) =0
Vo € D(R), suppp C (—o0,0).
As we can see, for a function f € L{ (R; X) we have f € D'(R,; X) if and

loc
only if f(t) = 0 for t € (—00,0). We denote by LL (Ry; X) a space of functions
[ € LL (R; X) that belong to D'(Ry; X), i. e. f(t) =0 for t € (—o0,0).

Let a > 0 be an arbitrary fixed number. By L2(R,; X) we mean a linear
space that consists of functions f € LL (R.; X) such that

loc

/ L)% o dt < oo,
R4

with the inner product

(F.9) 12 ) = / (F(£),g(t) e dt,

Ry

and induced norm

/
1flizm = (A Dnew] = [ [lr@ ] ™ 6
Ry

where L2 (R, ; X) is a Hilbert space.

We assume that the space L2 (R4 ; X) as a subspace of the space Ll (Ry; X)
is identified with corresponding subspace of the space D'(R;; X). As a result
we can consider the derivative f*) of any element f from the space L2 (R ; X)
in terms of the space D'(R; X ), where k is an arbitrary natural number.

Let N be a set of natural numbers, Ny := NU {0}. For arbitrary m € N we
define the weighted Sobolev space

HZL(R+7X) :{f € L?X(R“F?X)‘ f(k) € Li(R+aX)a k= 17m}7 (6)

with the inner product

e =Y [ (FP0.000) e ar
k=0g,
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and standard norm

m 1/2
o) = [Z||f<’“>|%g(R+;X)] | -
k=0

It is known that for an arbitrary function f € H!'(R;; X) and any point
to € [0,+00) there exist traces f(tg) € X,..., f™ D(ty) € X, and f(0) =
0,..., f(m=1(0) = 0.

Let’s now consider spaces of functions defined on Q. We denote by D()
a linear space of infinitely differentiable finite functions ¢ : Q@ — C. We say
that the sequence {¢,} converges to ¢ in D(Q) if there is a compact K C 2
such that supp ¢, C K for all n € N, and D%y, = DBy when n — oo on K
for any 8 = (B1,...,0n) € Nj. We denote by D'(€2) a linear space of linear
continuous functionals F : D(Q2) — C. Elements of the space D'(Q) are called
generalized functions given on Q. Also we denote by (F,¢)pq) an action of
element F € D'(Q2) on element ¢ € D(Q).

For arbitrary 8 = (B1,..., 8n) € Nij and generalized function F' € D'(Q) a
derivative DPF € D'(Q) is defined according to the rule

(DPF, ¢)pia) = (—1)P(F, DPo)pa), ¢ € D). (8)

Let f € LL (), i.e.,, f: Q — C be a measured function such that for any

compact K C 2 the restriction f|x of the function f on K belongs to the space
LY(K). Obviously that functional Fy : D(2) — C defined by the rule

(Fr. )by = /Q f(2)p(x)dz, € D), (9)

belongs to the space D'(Q).

Based on the Dubois-Reymond lemma, mapping of the space Lll0 .(€2) into the
space D'(Q) that is defined in (9) is injective and, therefore, the space Li ()
can be identified with its image in this mapping (this image is a linear subspace
of the space D'(£2)). Thus, we consider that Li (Q) C D'(1).

Let L?() be a linear space that consists of the functions v € LL (€2) such
that [, |v(z)|? do < co. In this space the inner product and the induced norm

are defined as
(0, w)o 1= /Qv<x>w<x>dx, [[ollo = [(v,0)o] "

Henceforth, by derivatives of a function from L?(Q2) we mean the derivatives of
this function as elements of the space D'(2) according to the rule (8).
Let’s denote a Sobolev space

HY Q) :={v e L*Q) | vy, € LX), i =1,n}.

It is a Hilbert space with the inner product

(v,w)1 := (v,w)g + [v,w] = /Q (v(z)w(z) + Vo(z)Vw(z)) dz,
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and corresponding norm

1/2
ol = [[[vl3 + [v,0]] 2,

where

[v, w] ::/QVv(l‘)Vw(x)dx:;/vaj(x)wxj(a:) dx.

Let’s introduce one more space
HY(Q,A) = {ve H(Q)| Av e L*(Q)}.
This space is a Hilbert space with the inner product
(v,w)2 := (v,w)1 + (Av, Aw)y =

= /Q [U(%)W+ Vo(z)Vw(z) + Av(z) Aw(z)] do

and norm
lvllz == (oIl + 1A0]3] ", v e H'(@,A). (10)

Now we consider operator A : HY(Q, A) — L?(Q) defined by the rule: Av =
Av, v € H' (2, A). This operator is linear and closed. Henceforth, we denote
it by A.

Next we denote by H'/2(I') a Sobolev space which consists of functions that
belong to the space L?(T') and can be approximated by the elements of the
Sobolev spaces HY?(R"1) using the local parametric representations of the
smooth parts of the Lipschitz boundary (for details see, f.e. [14, §7.3 in Chapt.
1]). H~'2(T") is a dual of this space. Also we denote by || - 172 and || - [|=1 /2
the norms in spaces H'/2(T') and H~Y2(T') respectively. (., ")1/2 is an action of
the element of H~/2(T") on element of the space H/?(T).

It is known that there exists a linear continuous and surjective operator

Yo o HH(Q) — HYA(D),

which is a continuous extension of the operator 7 : C'(Q) — C(I'), defined
by the rule Jov = v|p, v € C1(Q). In particular, there exists such a constant
C1 > 0 that

hovllije < Cillolh, v e HY(Q). (11)

Operator v is called a trace operator.
In addition we need a normal derivative operator (in the weak sense)

v HYQ,A) — H YD),
which is defined by the identity
<’Yan’Yow>1/2 = (Avvw)o + [va]v v E Hl(QvA)v w e Hl(Q)

The mapping 7 : HY(Q,A) — H~Y2(I') is continuous and for smooth func-
tions v € CY(Q) we have y1v = 9,v|r [6, Lemma 3.2]. Based on this we obtain
the Green’s formula

(Av,w)o = (119, Y0w)1/2 — [v,w], v € HY(Q,A), we HY(Q), (12)
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and inequality
vl -1je < Coflolla, v e HY(Q,A), (13)

where C5 > 0 is some constant.
In the case of vector-valued functions we consider new operators

Jo: LA(Ry; HY(Q)) = L2(Ry; H'2(I))

and
T LE(Ry; HY(Q,A)) — L (Ry; HV2(D))

defined by the rules you(t) := yo(u(t)), t € Ry, and yu(t) ==y (u(t)), t € Ry,
respectively. For simplicity, in the sequel we suppress the symbol ’tilde’ and
write 7o and ~y; instead of 7y and ;.

Lemma 1. Let u € L2(R; H(Q)). Then vou € L2(Ry; HY*(T')) and op-
erator o is continuous on L2(Ry; HY(Q)). If u € LA(Ry; HY(Q,A)), then
yiu € L2(Ry; H-Y2(T)) and operator 1 is continuous on L2 (R, ; H'(Q, A)).
In addition, if u € H2(Ry; L2(Q)) N HLY(Ry; HY(Q)), then u € C(R; HY(Q))
and u' € C(R; L3(2)), furthermore u(t) = 0, u'(t) = 0 when t < 0.

Proof. This statement easily follows from the definition of the space L2 (R, ; X)
where X is a Hilbert space, and inequalities (11) and (13). O

Lemma 2. Let u € HY(Ry; HY(Q)). Then
You € HY (R HY2(T)) and  (you) = you'. (14)

Proof. Let v§ : H-Y/*(') — (HI(Q))/ be a dual of the trace operator 7 :
HY(Q) — HY2(I') and (HI(Q)), be a dual space of HI(Q) Notice, then for
any u € HL(Ry; HY(Q)) and ¢ € D(R) an integral A(u f’mu )¢ (t)dt is

a linear continuous mapping A : Hl(Ry; HY(Q)) — Hl/z( ) and the product
(*;+)1/2 is also continuous, so we can interchange the order of these operations.
Then for any v € H~/2(T) and ¢ € D(R) we have

(v,/vou(t) @'(t)dt)y s = /(v,'mU(t)h/z ¢'(t)dt =

R R
= /(76‘% u(t)) () ¢'(t) dt = <76‘U,/u(t) ¢'(t)dt) o) =
R R
=~ (oo, [ WO ety = [ G50 Oy o(0) dt =
R R
= —/<”7’YOU( N1y2e(t) (v /7 (t)dt)12-
R R
Hence (14) directly follows from this. O
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3. MAIN RESULTS
In this section we state the main results of this paper.
Let’s define a strong solution of the problem (HD) for the given a > 0,
g€ L2(R,; HY2(T)) and b € L>(T).

Definition 2. By a strong solution of the problem (HD) we mean the function
we H2R; L3(9Q) N HA Ry HY(Q) N IR HI(Q,A)),  (15)
for which the following equalities hold
u’(t) — Au(t) =0 in L*Q), teR,, (16)
ult) + blou(t) = glt) in HVAT), teR,. (17)
Theorem 1. Let g € H>(Ry; H Y/2(T")) for a > 0 and b € L>(T"), b > 0 on
I'. Then the problem (HD) has no more than one strong solution.

Theorem 2. Let g € H>(Ry; H /(")) for a > 0 and b € L>(I"), b > 0 on
I'. Then there exists a strong solution to the problem (HD) (and only one).
In addition, it satisfies the estimate

lull gz sz + ullm @i @) + el oz @y m@a)) < (18)
S C3 ||gHH§(R+;H71/2(]—‘)))

where C3 > 0 is a constant dependent on the input data only.

The proofs of the aforementioned theorems are provided in section 5.

4. LAPLACE TRANSFORM OF VECTOR-VALUED FUNCTIONS

Let S(R) be a linear space, composed of the infinitely differentiated functions
1 : R — C such that

iulg tF]p)™) (8)| < 00 for any k,m € Np.
€

By definition, the sequence {1} converges to ¥ in S(R) when
sup(1 =+ [t))E[0lm™ () — ™) (1)) = 0 for arbitrary k&, m € Ny.
teR n—00

By S'(R; X) we denote a linear space of linear and continuous mappings G :
S(R) = Xy.

The elements of the space S(R) are called rapidly decreasing functions, and
the elements of the space §'(R; X) are the slowly increasing generalized vector-
valued functions. This definition, in particular, is due to the fact that the
element G, € S'(R; X) determined by the rule

Gyi)sw = [ VO 6 eSR) (19)
corresponds to the function g € L{ .(R; X) such that

/ lg(®)||x(1+ |t])"*dt < oo, where s=s(g) >0 — some number, (20)
R
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By (-,-)sm) we denote an action of an element of the space S'(R; X) on an
element of the space S(R). Notice that the functions g € L{ .(R;X), that
satisfy the condition (20), form a linear space that due to the mapping (19)
can be identified with the subspace of the space S’(R; X) (hereafter we consider
that to be done).

Let’s recall the definition of the Fourier transform of elements of the space
S'(R; X). Before this, we need to define the Fourier transform of functions of
the space S(R). According to the commonly accepted definition, by Fourier
transform of the arbitrary function ¢ € S(R) we mean the function {/; :R—=C,

determined by the rule

V() = F)0) = o [(0)](n) = /R@Z)(t) e”dt, meR.  (21)

It is known that the mapping § : S(R) — S(R) is an isomorphism.
For the arbitrary function g € L'(R; X) the Fourier transform §[g] : R — X
is also defined by the rule (21) (with replacement of ¢ by g), namely

3n) = $lgl(n) = Frosnlg (O] () = /R oy Mdt, qeR. (22)

For any element G € S'(R; X)) its Fourier transform is defined as the element
S[G] € 8'(R; X) such that
(BIG), ¥)sm) = (G, FW])sm), ¥ € S(R). (23)

It is easy to verify that (22) follows from (23) if G = g € L*(R; X) and vice
versa.
Let w € R be an arbitrary number. We define

D (w,Rp; X):={FeD(Ry;X) | e F() e SRy X) VE>uw},
where §'(Ry; X) := D'(Ry; X) NS'(R; X). In particular, the functions f €
Ll (Ri; X) such that

e v f() e LRy X) VE>w, (24)

are elements of the space D'(w, Ry; X).

We denote I1,, := {p = £+in € C | Rep = £ > w}. By the Laplace transform
of the function G € D'(w,R1; X) we mean a function G : 1, — X determined
by the rule

G(&+in) = G(p) = L[G)(p) = Fromle ' G(D](€ + in). (25)
Hence, it easily follows that
G(t) = T, LG E +in)(t), teRy, (26)

is an inverse Laplace transform.
From the definition of the Laplace transform of the functions f € L{ (Ry; X)
satisfying the condition (24) we obtain

o) = Slf(p) = / f(HePtdr, pell,. (27)
Ry
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Note that if the function 1 — f(f +in) : R — X belongs to L'(R; X) for some
£ > w, then according to (26) we will obtain

ft) = ;ﬁegt/f(é +in) " dn =
R

1 R ' 1 R (28)
—ori [Fexmecian = o [ fpetdp, ter.
27 27
R Rep=¢

This is the inverse Laplace transform in this case.

We introduce a space H(w; X) which is composed of the analytic functions
h: 11, — X, that satisfy the condition:
(H): for any £, > w there exist the constants C' = C'(§p) > 0 and s = s(&) >0
such that

[h(P)llx < C(A+[pl*), Rep> &. (29)
Proposition 1 ( [25], §10.4; [8], section X VI, §2). The Laplace transform bijec-
tively maps the space D' (w,R1; X) to the space H(w; X). Furthermore, if the
function f € H(w; X) satisfies the condition (29) (with the replacement of h by

f), then there is (by applying the Laplace transform) an image of the function
f € D'(w,Ry; X) which is defined by the formula

1 (d " f(p)
f(t) = i <dt — b) / meptd]% t € Ry, (30)
Rep=¢

where b,& € R, k € N are arbitrary numbers such that b < w, € > &, k > s+1.

The formula (30) defines the inverse Laplace transform which in the special
case has the representation (28).
We note that
Li(Ry; X) C D'(a/2,Ry; X),
because for the arbitrary function f € L2(Ry; X) we deduce f € L} (Ry; X)
and the condition (24) holds:

[ e eslsde= [ e g el 9% <
Ry

Ry

1/2 1/2
< [ / e—atnf(t)n%(dt} [ / ew—?otdt] _
Ry Ry

1
= = Ifla®yix) <00

2(§ - /2)
for any & > a/2. Herein we used the Cauchy-Schwarz inequality.
We denote by L£(IL,/2; X) a linear subspace of the space H(a/2; X') composed
of such functions p — h(p) : Il — X that are analytical on the open half-
plane II,, /o, continuous on its closure I, /o and satisfy the condition (H) when

s = 0, and for every value £ > a//2 the functions n — h({+in) : R — X belong
to the space L*(R; X), i.e. [ ||h(€+in)|% dn < oo.
R
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Corollary 1. The Laplace transform £[-] bijectively maps the space L2 (R, ; X)
on the space L(I,/9; X) and, moreover, the arbitrary function f € L2(Ry; X)
has as an image the function

ﬂm=£m@%=/f®e“ﬁ,peﬂwl (31)
Ry

and for an arbitrary function J?E L(I1y)9; X) its inverse image f € L2(Ry; X)
is defined by the formula

f(t) = £ = / fo)Pdp, teR,, £za/2  (32)
Rep=¢

Also the Parseval equality holds

[ o= 5= [ 15 a=

2
Ry Rep=¢
, (33)
= o [IFe il dn € a2
R
in particular,
1 R 1/2
— 2 —
s = (5 [ IFlEa) " =
Rep=a/2
(34)

R 1/2
= (55 [ IFtas2+ inlBean)
R

Proof. Let f € L2(Ry;X). Then using the Laplace transform definition we
obtain

p=§+in

F(p) = LoplfOI0)" =" Fesnle S FO(E +in) =

(35)

:/ e Stf(t)e M dt = f(t)yePdt, pc 1T, /5.
R, Ry

Since the function t ~— t*f(t)e P : Ry — X is absolutely integrable for
arbitrary p € IL,/ and for arbitrary point py € m this function has the
absolutely integrable function as its upper bound in some neighborhood of po,
then the function f is analytical in II, /5. Furthermore, it can be proven that

[ is continuous on Il /5.
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Now we show that f satisfies the condition (H) with s = 0. Indeed, according
0 (35), for p = & +in € 11,/ we obtain

||f(p)\|x</IR Hf(t)llxe—ftdt:/R e 2| £ (1)||x el 2O dt <

1/2 1/2
—at 2 (a 28)t _
< [ / K Hf(t)Hth} [ K + dt] (36)

-t
2(§ - /2)

Since the function t — e~ f(t) belongs to L?(R; X) for arbitrary £ > a/2
and the Fourier transform maps L?(R; X) on L?(R; X), then the function 7 —

f(g +in) belongs to the space L?(R; X) and the Parseval equality holds

1112 i)

—2¢ 2 L 7 T _ 1 T2
[ et = o [ifermikan=g [ 1fwlka

Rep=¢

Therefore, we proved that f(p), pE m, belongs to the space L(I1,/2; X).

Now we assume that ]? € .C(Ha/Q;X) and demonstrate that there exists
f e LRy X) sAuch that f is the image of f when applying the Laplace
transform. Since f € H(«/2; X), there exists f € D'(«/2,Ry; X) such that

~

£ = @I ET S 5 IFE @), &> a/2

Hence, since the function 7 +— f(§+i77) : R — X belongs to the space L?(R; X)
for every £ > a/2, we obtain

~

tr e £() = 8, F(E+ () € PR3 X) for arbitrary € > a/2

and, in addition,

f(t) = ;ﬂét/mf(g +in) €M dn = 217T/Rf(£ i) 6Tt gy —

1 ~ 37
“omi / f(p)e’dp, teRy. 7

Rep=¢

Thus, we proved that f = 2_1[ﬂ belongs to L2 (R, ; X) and the formula (37)
holds. U

Corollary 2. If a function f belongs to the space H' (Ry; X) (m € N)
then the functions p — pkf( ) belong to the space L(11,9; X) for every k €

{0,1,...,m}. And vice versa, if the functions p — pk]?( ) belong to the space
LIy 95 X) for every k € {0,1,...,m} then the function f := £~ L[f] belongs to
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the space H'(Ry; X) and
FR ) = 7 W Fp)](t) =
- / PEf(p)etdp, teRy, k=Tm, (38)

27
Rep=¢

where & > «/2 is an arbitrary number and values of the function f do not
depend on it.
Furthermore, the following equalities hold

1 Ui —~
1o = | [ 20 ] 17 dp =
k=0

Rep=a/2 =

m

[3° @4+ )1 F(a/2 + in)I dn.

1
o

Proof. 1t is sufficient to consider the case of m = 1.

Let f € Hy(Ry; X), ie. f e L3(Ry; X)NOR; X), f' € L3 (Ry; X), f(0) =
0. According to corollary 1, we obtain that the functions p f(p) and p —
J?’(p) belong to the space L(Il,/2; X). By the definition of the Laplace transform
and by using the formula of integration by parts, we obtain

SN iy [ u=ePl du=-—pePtdt |
7e) _R/f(t)e = e |-
" t=4o0 . 7
= f(t)e ! +p/f(t)6_”tdt=pf(p), p € Iy
t=0
Ry

~

Hence, it directly follows that p +— pf(p) € L(I1y/9; X).

~ -~

Now we assume that p — f(p) and p — pf(p) belong to the space L(I1,/2; X).
According to corollary 1, we obtain that the function

L [ f(p)ertdp, ift>0,

27
f(t) = Rep=¢ (39)
0, if t <0,

belongs to the space L2(Ry;X). We are now in the position to show that
fe€CMR;X), f € L2(Ry; X) and, in particular, f(0) = 0.
First of all we notice that by the Cauchy—Schwarz inequality we obtain

1f)llx = Wl Pl fp)]x < e PPIfP)I%.  p €y

~

Hence, since p — pf(p) € L(I1,/9; X), it follows that

n— | F(€+in)||x € LY(R) for arbitrary £ > a/2.

It means that the function f defined by the formula (39) belongs to the space
C(R; X), and since f(t) =0 at t <0, then f(0) = 0.
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Let’s show that
1 ~
PO =5 [ Piwetan tery (40)
Rep=¢

~

Indeed, since p — pf(p) € L(I1,/9; X), the right part in the formula (40) defines
the function from the space L2(R; X). It remains to prove that the indefinite
integral of this function which is equal to 0 at ¢ = 0 coincides with f.
Let R
L ePldp, ift >0,
fs fu(t) = 2mwfzgpf(p) p (41)
0, ift <0.

We find

t 1 t R
/Ofl(s)dSZQTri/o p (p)epsdp ds =

Rep=¢
- / pf(p) /t e ds| dp = — / f(p) [e?t —1] dp =
2mi 0 2
Rep=¢ Rep=¢
1 ~ 1 ~
o7 / f(p)et" dp 5 / f(p)dp=f(t), teRy.
Rep=¢ Rep=¢

Here we took into account that

0 =5 [ T o

Rep=¢
Therefore, the proof of the corollary 2 is completed. U
Let Xj, j =0,1,2, be the Hilbert spaces with the inner products (-,-);, j =
0,1,2, and induced norms || - ||;, j =0, 1,2, respectively. We assume that
X2 C X1 C Xo, (42)

and these inclusions are continuous. The examples of such spaces are Xg =
L*(Q), X1 = HY(Q), Xo = HY(Q,A).
It is obvious that

I2(Ry; Xo) © I2(Ry; X1) C T2 (R Xo) € D'(a/2,Ri5 Xo)  (43)
and
LIl 2; X2) C L(Ig)2; X1) C L(g/0; Xo) C H(a/2; Xo). (44)
In addition, for every j € {0, 1,2} the Laplace transform
L] D'(a/2,Ry; Xo) — H(a/2; Xo)
bijectively maps the space L2(R; X;) on the space L(I1,/; X;), and the Par-

seval equalities hold

1 - . .
||f||%a(]R+;Xj) = %”f(()é/Q + Z')H%Z(R;Xj)’ J = 07 la 2. (45)
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Corollary 3. Let a function f belong to the space H2(R+; Xo)NHI(R; X1)N
L2(Ry; X3). Then for the function f(p f ft)ye ®Ptdt, p € a2, the fol-

lowing inclusions hold
p f(p) € L(11y/2; X2),
p > pf(p) € LI, 03 X1), (46)
p = p*f(p) € L(Tlay2; Xo).

And vice versa, if for some function f(p), p € Il /9, the inclusions (46) hold,
then the function

~

o7 fp)eltdp, ifteRy,
ep=¢
0, ift e R\ Ry,

where £ > «/2 is an arbitrary number (the value of f does not depends on £ ),
belongs to the space

HZ (R Xo) N Hg(Rys X1) N L5 (R Xo),
and, moreover, f € C'(R; Xo) N C(R; X1).

(47)

Furthermore,
1 ~ 1 ~
M) = — ptd ”t:/ 2 ptd teR
FO=5m [ rEed r0 =5 [ PRoetd ter.,
Rep=¢ Rep=¢
and

2
||f||Lg(R+;X2) “ori

1 ~
1 (p)II3 dp = 2W/If(Oé/2+2"'7)||§d77,
R

T
Rep=a/2
1 N
1 =5 [ [+ IR dp =
Rep=a/2
1
=5 [ [+ /a4 ] flag2 + in)|} dn,
R
1 —~
1B, o =g [ L+ 16P + bl 150 do =
Rep= /2
1 27 7 .
== [ [1+a2/a+n? + (@244 02) ] 1 fla/2 + in)| dn.
R

Proof. This statement easily follows from the statement of the proposition 2.
O

Corollary 4. Let X and Y be Hilbert spaces, and A : X — Y be a linear
continuous operator. Then, if f belongs to the space L2 (R ; X) then Af belongs
to the space L2(R.;Y) and

ALx[fl(p) = Ly [Afl(p), p €Ty
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Furthermore, if f belongs to the space L(I,/9; X) then A]? belongs to the
space L(I1,/9;Y) and

AL AR = e ASI(®), teRy,

where £x @ LZ(Ry; X) = L, 0; X), &y : LL(Ry;Y) — L(IL,9;Y) are the
Laplace transform of the corresponding spaces.

Proof. This statement easily follows from the definition of the direct and inverse
Laplace transforms and properties of linear continuous operators in Banach
spaces. U

5. THE PROOFS OF THE MAIN RESULTS
Proof of the Theorem 1. Let’s prove by contradiction. So, we assume that
statement of the theorem is incorrect, and let u; and ug be two arbitrary strong
solutions of the given problem. We substitute them alternately in the equation
(16) and boundary condition (17) and subtract the corresponding equalities.
As a result for v := u; — ue we obtain equalities

V"(t) — Av(t) =0 in L*(Q), tecRy, (48)
o(t) + by’ (t) =0 in HV3(D), teR,. (49)
v(0) =0, o'(0)=0. (50)

Next we multiply (in a scalar way in L?(f2)) the equality (48) by v'(t) for
almost every t € Ry :

(V" (1), 0'(t), — (Av(t),v'(t)), =0, teRy. (51)
It is easy to see that
(" ()0 (1) = 5 (WOR), e’y (52)

By using Green’s formula and equality (49), we obtain
(Av(t), (1) = (mv(t), 100 ()12 — [v(t), 0" ()] =
= —(bov/ (), 200/ (D1j2 — 5 (IV0(IR) £ € R
Taking into account the inequality
(b’yov’(t),'yov'(t))l/g = (b’yov’(t),'yov’(t))Lg(F) >0 forb>0 ae.teRy,
and using (52) and (53) we obtain from (51)

(53)

!/ /
(I ®I) + (IVe®)5) <0 ae. teRy. (54)
Then we substitute ¢ by s in inequality (54) and integrate over s from 0 to ¢ > 0
W' ONF + IVo@)IIE < 10 O0)II5 + Vo)l a-e. t € Ry. (93)

Hence, by taking into account (50), we have v(t) = vg, t € Ry, where vg €
L%*(Q) is some element. From here and from the first condition of (50) we
obtain that v(t) = 0, t € R4. This contradiction proves our statement. (]
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Proof of the Theorem 2. Let’s prove the theorem 2 in several stages.

First stage. Let’s denote by £o[-] and £;5[] a direct and an inverse Laplace
transform of the spaces L2Z(R4;L*(Q)) and L(I1,)0; L*(Q)) respec-
tively, by £;[] and £;'[] a direct and an inverse Laplace transform of the
spaces L2 (Ry; H(Q2)) and L£(I1,/2; H'(€2)) respectively, by £o[-] and £ a
direct and an inverse Laplace transform of the spaces L2(Ry; H!(Q,A)) and
E(Ha/z;Hl(Q,A)) respectively, by £; /5[] and }31—/12[] a direct and an inverse
Laplace transform of the space L2 (R, ; H'/?(I)) and LI 93 HY2(I")) respec-
tively, by £_;/o[] and 2:1/2[-] a direct and an inverse Laplace transform of the
spaces L2(Ry; H~'/2(T)) and L(IL, /25 H~12(I")) respectively.

Let u(-,t), t € R4, be a strong solution of the problem (HD), i.e, u €
H2(Ry; L2(Q) N HL (R HY Q) N LE(R; HY(Q,A)) and the equalities (16)
and (17) hold. Then we apply the Laplace transforms £¢[-] and 2;/12[-] to this
equalities respectively:

Lo[u"](p) — Lo[Au](p) = 0, (56)

2—1/2[%“] (p) + 2—1/2[b(’Y0u)/] (p) = 2—1/2[9] (p), pe m (57)

Notice that the operators A : H'(Q, A)) — L*(Q), v : H'(Q)) — HY*(T')
and vy : HY(Q,A)) — H-Y2(I') are linear and continuous. So, using the
corollaries 1 — 4, we obtain that for every p € m the Laplace transform
u(-,p) := La[ul(-,p) as a function of the variable = € Q belongs to the space
H(Q, A) and satisfies equalities

—Au(-,p) + p*u(-,p) = 0, (58)
(-, p) +pbyou(,p) = g(-p), p €y, (59)
where g := £_; 5[g] is the Laplace transform of the function g.

Second stage. Let’s consider the following problem: for every p € 11,/ find
a function w(-,p) € H' (), A) which is a strong solution of the problem

—Aw + p*w =0, (60)
nw +pbyow = h(p), (61)
where h: 11,/ — H~1/2(T") is a given function.

Lemma 3. The problem (60),(61) has one and only one solution for every
p € Ly /2. Moreover, it satisfies the following estimates

[wllo < Callhll-1/2; (62)
lwlly < Cs [pl[hll =12, (63)
lwll2 < Cs [pI? 7] -1/2, (64)

where Cy, Cs, Cg are some constants.
Furthermore, if the function h : 11,5 — H=Y2(D') is analytic then the func-

tion p = w(-,p) : Iy — H'(Q,A) is also analytic.
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Proof of the lemma 3. As well as it was proved in [20, Teopema 2.2] for the case
p € R the problem (60), (61) can be reduced to the variational identity

Eip(w,v) = <h,’}/02)>1/2, v E HI(Q)v (65)
where
ap(w,v) = [w,v]+p2(w,v)o+p/b(:c)'yow(w)’ygv(x) dl', w,v € Hl(Q) (66)
T

Hereinafter, the argument p in the function representation w(p,-) is omitted
for simplicity. Taking into account the Cauchy—Schwarz inequality and the
continuity of the trace operator, for the continuous anti-linear form in the right
part of the equation (65) we obtain the estimate

[(h, Y001 /2] < (Bl =1 2ll700]l1 /2 < CillBl|—12llv]l1, v € HY(). (67)

where C is a constant from inequality (11).
The sesquilinear form @, (-, ) is continuous on H'(2) x H()

jap(w, )| < Crllwlyllvlly, w,ve HY(Q), (68)

where C7 is a constant depended on p. It is known that for continuous sesquilin-
ear form

ap(w,v) := [w,v] + p*(w,v)o, (w,v) € H(Q) x H(Q),
the following equality holds
Rep

1/2
[vllpe = (IVoll§ + [pI* [0ll5) ", v e HY(Q). (70)
It is easy to see (see also [13]|) that for arbitrary fixed p, Rep > «/2 the
following inequalities hold

Re(e ™8P ay(v,v)) = ||v\||p|m ve H'Y(Q), (69)

where

id
ol < lvllpe < *Hvllla ve H\ (), (71)

where x := min{1, a/2}.
By taking into account this and equality pe
mate

—iAreP — |p|, we obtain an esti-

—1Ar ~ p
Re(e %P Gy(v,v)) =— L [[o]3q + Ip] / b() ov(a) P dT" >
T

_Re
Ip|

Rep
‘ | ||UH|p|Q’ UGHI(Q)a

(72)

i.e., the form e *A™8P g (.. .) is coercive in the space H' ().

Therefore, for arbitrary p € 11, /5 all conditions of the Lax-Milgram theorem
are true (see., for example, |7, section VII, §1, Theorem 1]) regarding the vari-
ational equality (65). Hence, the equality has a solution w € H() and it is
unique. Since the function w satisfies equation (60) in terms of distributions,

Aw = p*w € L*(), (73)
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ie,we HY (Q,A).
Now we obtain estimates of the solution to the problem (60),(61). By taking
into account (67) and (71), we have

Re(e™ 87 dy(w, w)) < [ap(w, w)| = |(h,yow) 1] <

Cy (74)
< Gl 2y ppllwlly < = lRl-2lwlipo-
From this and (72), we arrive at the inequalities
Cl 2Cl
ol € oAl 172 < 2t plla] 172 = ColplAll -1
where Cg := % Hence, considering (70), we have
IVwllg + [P lwlF < CElpPlIR]12, - (75)
Then the following estimates follow from obtained inequality:
lwllg < CE RN o, (76)
IVwli§ < CEIpIP 11124 o- (77)
Inequality (62) directly follows from (76) and from (77) we have:
lwllf = [lwllg + [IVwl§ < CElIRIIZ, o + CElpPIIAIZ, 1 =
1 1
N 20112 2(_ 1 217,112
=2 (o 1) PRI o < €8 (s + 1) BRI < g
2 (2 ST
<2 (1) IR
hence, we obtain (63) when Cs := Cs (2 +1).
Taking into account equality (73) we have
1Aw][§ = [pl*llwll§ < CElp* A2 o (79)
Therefore, we get
[wl3 = [lwllf + [|Awl[§ < CElpPIIAIIZ, o + CElpIMIAIZ, o =
C? 205 ? (80)
— (5 + C8) bl WIE o < (20 o) AR,
whence after denoting Cg := Cg + 2C5a~! we arrive at equality (64). O

Third stage. Let’s prove the existence of a strong solution to the problem
(HD) and find its image.

Let function w(z,p), x € Q, be a strong solution to the problem (60),(61)
with h = g(p) for every p € Il,/5. Now we show that function p — w(-,p)
satisfies conditions of the corollary 3 with Xy = L?(Q), X1 = H'(Q), X3 =
HY(Q,A). At first we set an equality

—

gp) =p Fg®(p), ke{1,2}, pell,p. (81)
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In fact, for arbitrary p € 1l /o after integration by parts we get

. _ u=g(t); du=g'(t)dt
9(p) = /g(t)e Pt = [ dv = e~Pt dt: —Lert | T

v =
R4
1 = 1 1~
=——g(t)eP? —i—/g/t eptdt:/g"teptdt:g”p,
. (t) o o (t) e (t) pe (p)
Ry Ry
whence we obtain (81).
From (81) an equality follows
[GP)-1/2 = oI 9P @) 1/2 k€ {1,2}, pelyp. (82)
Based on the lemma (see estimates (62) — (64)) and the equality (82), we obtain
pI*[[w(®)llo < Calp*[g(®)]|-1/2 = Callg” @) 12, (83)
plllw@) 1 < Cslpl* [[g(p) I -1/2 = Csllg” ()| -1/2: (84)
w(p)|l2 < Celp|” [|9(p -172 = Lellg"\P)ll-1/2, P a/2:
lw(p)ll2 < Celpl* l9(p)ll Cellg" () ell (85)

Since function p — w(p) is an analytic in 11, /5 and continuous on Il /5, and

¢" belongs to the space L2 (R, ; H~Y/2(I")), based on the estimates (83) — (85),
all conditions of the corollary 3 regarding function p — w(p) hold, i.e.

pw(p) € LMy H(Q,A)),  prs pw(p) € L(I,/2; H' (),
p = p*w(p) € L(I,9; L*()).
Therefore, function

5= [ w(z,p)eftdp, for z€Q, teR,,
u(z,t) = Rep=¢ - (36)
0, for z€Q, t e R\ Ry,

where £ > «/2 is arbitrary number and value of u does not depend on &, belongs
to the space

Ha (R L2(Q)) 0 Ha (Ry; HY(Q)) N LL (R4 HY(Q, A)),

and, moreover,

1
ut(x7t) = % / pU)(.T,p) ept dpa utt(xut) =
Rep=¢
1 (37)
=— / pPw(zx,p)ePtdp, € Q, t € Ry,
271
Rep=¢
and )
ull2 (&, 0,0y = Py [w(p)|3dp <
Rep=o/2
o2 o (85)
6 2 201 1112
oo | ITOIR o= GRS By sy
Rep=a/2
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1
oy = 3r | A+ P d <
Rep=a/2

[ P+ 1) Iz ap <
Rep= /2 (89)
_ - -
<o [ (190 + 1702 ) do=

Rep=a/2

C2
<2
27

= Cg (Hg/|’%g‘(ﬂg+;]{71/2(p)) + Hgﬂum (Ry;H~ 1/2(r)))

(L4 [p* + [pI") [lw(p)|§ dp <
Rep=a/2 (90)

lullfr @2y = 557
04 2 4\ (1~ 2

1 ¢ |

S omi Rep:a/z( 1P+ 1pl) 18P) 1212 dp = Cillg i gy -1/20o

Now we demonstrate that the function w is a strong solution of the problem
(HD). Since the operators A : H'(Q,A)) — L*(Q), v : HY(Q)) — HY2(I)
and 1 : H'(Q,A)) — H~Y2(I) are linear and continuous, from the aforemen-
tioned properties and the corollaries 1 — 4 we obtain

Sal[Aw( () = AL w(p)](t) = Au(t), t€Ry,
o PPwp)(t) = u" (), teRy,
_1/2[7110(10)](75) = 7185 [wp)(t) = nu(t), Ry,
£ abprow)](t) =bL 1/2[p70w( p)(t) = by Ly pw(p)](t) =

=byou'(t), teRy.
Next we apply mapping £, (] to the equality
—Aw+pPw=0, pe m, (91)
and mapping £ /2[ ] to the quality

nw(p) +bpyow(p) =g(p), pellyy. (92)

As a result, by taking into account the aforementioned, we obtain what is
needed.

O

6. CONCLUSION
The results on the existence and the uniqueness of the solution to the prob-
lem (HD) with estimates in corresponding functional spaces obtained in this
research are the basis for the development of methods for finding numerical
solution of such problem. Since the Laguerre transform is also applied in men-
tioned spaces, we can use it to reduce the problem (HD) to an infinite sequence
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of boundary integral equations. One of the advantages of this approach is that
each of these equations has the same integral operator in their left parts, and
their right parts are recursively dependent [10]. Note that the numerical results
obtained in [10] demonstrate the efficiency of the combined approach using the
Laguerre transform and the boundary element method for modeling evolution-
ary processes described by the problem (HD).

10.

11.

12.

13.

14.

15.

16.
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