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THE WEIGHTED ERROR ESTIMATE OF THE FINITE-
DIFFERENCE SCHEME FOR A SECOND-ORDER PARTIAL
DIFFERENTIAL EQUATION WITH A MIXED DERIVATIVE
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PE3IOME. ¥ crarti mobyn0BaHO 1 JOCIIKEHO CKIHIYEHHO-DI3HUIIEBY CXEMY
JJIsl PO3B’SI3yBaHHST TIEPIIOl KpAaNHoBOl 3aadi [AJjIs eTiNTHUIHOTO PIBHSIHHSA 2-TO
NOPAIKY 3 MINIAHOIO IIOXiTHOIO B IPAMOKYTHHUKY. 3a JOIOMOrOI0 Pi3HMIIEBOT
dyukmii ['pina ta inTerpaapHoro 306 pakeHHs MOXNOKHU AITPOKCUMAIIT OZIepKa-
HO BAaroBy OIHKY B PIBHOMIPHI# CITKOBIfl MeTpPHIN /s IMBUAKOCTI 361KHOCTL
CX€MU Ha y3arajbHEHNUX PO3B’SI3Kax. 3 BArOBOI OIiHKY BUILINBAE, 10 TOUHICTH
CXeMU BHINA BIINOBLAHO HA IB MOPAAKY Ta MOPAMOK (MOA0 KPOKY) mobsm3y
CTOPIH 1 BepIMUH NPAMOKYTHUKA TOPIBHIHO 3 2-M TOPSIKOM V BHYTPINIHIX
BYy3J/1aX CITKH.

ABSTRACT. We construct and investigate the finite-difference scheme for a
second-order elliptic differential equation with a mixed derivative in a rectan-
gle under the Dirichlet boundary condition. With the help of discrete Green’s
function and the integral representation of the approximation error, we obtain
the weighted estimate for the convergence rate of the scheme in the uniform
discrete norm and on generalized solutions. The estimate indicates that the
accuracy order of the scheme is higher near the sides of the rectangle than in
the inner nodes of the grid set.

1. INTRODUCTION

The convergence rate of any discrete method for solving boundary value
problems is traditionally characterized by a priori estimates with an appropriate
discretization parameter (or parameters). For example, in the case of the finite-
difference method such parameter is a grid step h. However, error estimates
do not usually reflect the influence of some other important factors. (One such
factor is Dirichlet’s boundary condition. Indeed, since an approximate solution
satisfies it exactly, it is natural for the accuracy of the scheme to be higher near
the boundary of the domain than inside of it.) Moreover, taking this impact
into consideration is not only of theoretical but also of practical significance
since near the boundary of the domain it allows to choose a coarser grid step.

The influence of the boundary condition was first named a boundary effect
in [1] and is generally characterized by some weighted estimates containing, in
addition to discretization parameters, the distance of a point to the boundary
of the domain. A systematic study of the boundary effect dates back to the pi-
oneering papers [1,2]. Currently, there are a number of publications (although
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not very many) devoted to the weighted error estimates of the finite-difference
schemes. For example, the boundary effect for the elliptic equations is consid-
ered in [2-5] and the initial and boundary effects for the evolution equations are
investigated in [6-10]. To prove the weighted estimates in the above-mentioned
papers, two different approaches are used: the first one is based on the com-
parison theorem from [11] (see, e.g, [4,5,10]) and the second one makes use of
discrete Green’s function and the main lemma from [12] (see, e.g., [6,7,9,13,14]).

The present paper is ideologically close to papers [13,14]|. Its main aim
is to obtain the weighted error estimates of the finite-difference scheme for
the inhomogeneous second-order elliptic equation with a mixed derivative and
constant coefficients under Dilichlet’s boundary condition in a rectangle.

We consider the problem

Lu = Liu+ Lou+2Ljou = —f(x), x € D,

u(z) =0, zel, (1)

where = (z1,22), D = {(z1,22) : 0 < 24 < lo, @ = 1,2} is a rectangle with

0?u(x) 0*u(z)
I'=0D La = Raa™ %7 o9
the boundary oD, u=k o2 021012

the coefficients kg satisfy the following ellipticity condition:

, O = 1,2, ngu = klg s and

2
ki€l + kool + 2k12616 > 7Y & V&, €R (v =const >0).  (2)
a=1

For convenience, we remind the reader about some traditional notation for grid
sets and difference derivatives [11]:

wa = {Ta =iqha, ia =1,...,No — 1, ha = lo/No (2< Ny €N)},
Oa =wa U{0}U{ly}, w, =waU{0}, wl =wsUl{l.},
w=wj X we is a set of the inner nodes, w=0w1 X &y, v=w\w;
Ve = {:c EV:xea=0,23_o € W3_a},
Yia={z €7 :2a=1, 30 € W3_a},
Yo = Y-aUVta, a=12;

u(z1 + hi,z2) — u(zx)

Ug, () = , T Ew] X W,

hi
—u(zr—h

uz, (r) = ul) u(il 1’562), T € wi X @y,

1
u:r1+h1,x2 —2u(z) +u xl—hl,:tz _
Uz, (T) = ( ) h(2 )+ ), T € wi X Wa;

1

the difference derivatives ug,, Uz,, Uz,z, are defined in a similar way.
Now we introduce the Steklov averaging operators S, , ST and the opera-
tors of the exact finite-difference schemes T, which are developed in [12]. For
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example, with regard to the variable x1, they are defined as follows:

x1+hy xr1
1 1
Sfu(z) = o / u(&, w2) d&1,  Syu(z) = " / u(&r, w2) dé1,
X1 x1—h1
1 z1+h1
Tlu(:r) = ﬁ / (hl - |l’1 - 51’)u<§17x2) dé.l
1
x1—h1

The operators S, , Sy, T are introduced similarly. Next we note some of their
useful properties and their connection with the difference derivatives:

T, =SS, =5S,55, T="NT=1TT,
4 Ou ou

QT%(z) :’bea(l‘), aT%(x) :uia(x)v

0%u
Ta@(x) = Uz 2, (), a=12.

2. THE FINITE-DIFFERENCE SCHEME AND THE PROPERTIES
OF THE DISCRETE OPERATORS
Applying the operator T' = T1T» to the differential equation (1), we get the
relation (the so called generalized balanced equation)

(STSQ_u>Lf1$2 + (Sl_S;u)m@ _
2

k11(Tow)z, 2, + koo (Th ) zoms + 2k12

=-Tf(x), z€ew.

Then we approximate problem (1) with the following finite-difference scheme:
Ay =My + Aoy + 20y = -Tf(x), z€w, )

y(.’E) =0, zenv,

with Aay = kaayfa$a7 o = 17 27 A12Z/ == 075k12(ya_j13}2 + y$1i2)~
Note (see, e.g., [11]) that the difference expression Ajpu approximates the
differential expression Lisu on the seven-point template

(z1,22), (z1£hi,22), (z1,22%h2), (z1+hi,22—h2), (21—h1,22+ho)
with the second order in h = (hy, ha) on the smooth solutions, namely:

Aou = Lisu+ O(|h)?), |h|* = b3 + h3.

0
Next we introduce the space H of functions defined on @ and vanishing on ~
with the inner product and the induced norm:

1/2
(1:0) = X mhay@)ota), ol = ol = VG0 = { mbat(@)

TEW TEW
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We also employ some standard notation from [12]:

(y,v)12 = Z hihay(z)v(z),

xij’Xw;
S hhay@v@), lla = V0, 0a, a=1,2,
reEWUY4q
2
00 = 1003 ) Z lvzalla,  I0Ie = ol ) = + v

Note that the grid function p(x) = T'f(x) is defined in the inner nodes x € w.

0
Putting ¢(z) = 0 for x € v, we get ¢ € H. Then the discrete problem [3] can
be rewritten in the form of the following operator equation:

0 0
Ay= Ay + Agy +2A10y =¢, y<€H, o€ H, (4)

0 0
with Ay, Ag, A1o0, At H - H, Aoy = —Aoy, a=1,2, Aoy = —A1oy.
Next we investigate the properties of the operator A.
0
Lemma 1. The operator A is self-adjoint and positive definite in H.

Proof. The self-adjointness of A follows from the relation

(Ay,v) = (A1y + Agy + 2A12y,v) =

_(kjlly{fl.’l‘l + k22y.’f72$2 + k’lQ(%’me + y$152)7 U) =

2
0
= Z koo (Yzar Vzala + K12 [(yiuvi’z) + (Yz2, Uﬂh)] = (y,Av) Vy,v€ H,
a=1

where the summation by parts formula is applied, for example:

> hiye, (x — Y hay(@)vs, () +

xr1EWwl xlewl

+y(l1, z2)v(ly, 22) — y(h1, 22)v(0,22), T2 € Wy,
where the relations yz, = 0 for x2 = l2 and ug, for 1 = [1 are taken into
consideration.
To prove the positive definiteness of A, we make use of the ellipticity condi-
tion (2) and the following inequality from [11]:
[0lF o = oz ]I+ llvz]lT > (8/1 +8/13) lv]* Vo e . (5)
We have

(AU, ’U) == kll(”ilavfl]l + ]{;22(’0:?3271}&_72]2 + 2k12(vf1avig) -

(kllv’ + kQ?v’ + 2]’612?}%11}12, 1]1 2 2 7(””51”% + Hv@”%)a

)
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which yields the useful inequality
0
(Av,0) = ol VoeH (6)

0
and the positive definiteness of A: (Av,v) > v(8/13 +8/13)||v||* Vv e H. O
Now we can move on to the following statement.

Theorem 1. The discrete problem () is uniquely solvable for any right-hand
side p(x), and for the discrete solution y(x) the following estimate holds true:

lils
w S — . 7
e < 55 g 1ol @)

0 0
Proof. Lemma 1 implies the existence of the inverse operator A™!: H — H

0 0
and therefore the existence of the the unique solution y € H for each ¢ € H.
To obtain estimate (7), we multiply by y both sides of equation (4) scalarly in

0
H and then apply estimate (6) and the Cauchy—Bunyakovsky inequality to the
left-hand side and the right-hand side respectively:

Yy < (Ay.y) = (2,9) < el Iyl < Illl(8/22 + 8/3) 7]y

which gives estimate (7). The theorem is proven. O
Next we introduce the following operators:

1w

0
1) By : HH — H, B1y = —Yz,2,, where Hj is a space of the grid functions

defined on the set & = w} x wy ;

0
2) By : Hy — H, Boy = —yz,3,, where Hs is a space of the grid functions
defined on the set w = w] X wy ;

0
3) Bs : H3 — H, B3y = —Yqu,3,, where Hs is a space of the grid functions
defined on the set & = w} x wy;

4) By : Hy — lgf, B4y = —Yz,2,, where Hy is a space of the grid functions
defined on the set w = w; x w;.

The inner product and the corresponding norm in the space Hy, k = 1,4,
are defined as follows:

1/2
(0 = X mapla)oto). ol = Vo = { i) |

TEW TEW
Now we prove the inequalities that we need further.
Lemma 2. The following estimates hold true:
1
A7 Byl < ylle Yye Hy (k=14 8
| | 2 lew_mu‘)\\ (8)

with \/k11keo — |k12| > 0 due to the ellipticity condition (2).
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0
Proof. We denote by By : Hy — H the operator that is conjugate to the

0
operator B} : H — Hy, namely:

0
(Bry,v) = (y,Bjv)y, Yy € H, Yve H.

From here we get BTy = —VYi,20, B3Y = —Yz120, B3Y = —Yz120> BIY = —VYz12-
Next we prove the inequality

0
Ayl = 2(V kirkoo — [k12) | Biylle Vye H (k=1,4).
For example, in the case k = 1 we have
Ayl = [[Ar1y + A2y + 2412y > || A1y + A2yl — (24129l
where

[ A1y + Agyl|” = [[Awy? + | A2yll® + 2(Avy, A2y) > 4(Ary, Azy) =

= 411k Y oy e Ysse, = dkiikes D huhoy? o, = dkukes| Biyl?,

+

ZTEW zew;" Xws

A2y 1* = (24129, 2A10y) = k3 Y Maho(Y2, 4, + Yoz, + 2120 Yaizs) <

TEW

< 21{%2 Z hth(?/%]fL‘Q + ygl.’ig) < 4]{:%2 Z h1h2y%1f2 = 41{;%2”‘8121/”%7

TEW mei"Xw;

which consequently leads to the inequality

0
lAy|l > 2(V/k1iksz — |kao|) | Biylh Yy € H.
Bearing this in mind and applying the main lemma from [12] (see p. 54) to the

0 0 0 0 o
operators A: H — H, By, : H, — H, B}, : H — Hj, (k = 1,4), we arrive at
inequality (8). O

3. THE ESTIMATE OF DISCRETE (GREEN’S FUNCTION
We denote by G(x,&) Green’s function of the discrete boundary problem

AeG(2,6) = MeG(,8) + Aoe G (2, §) + 2A10¢G (2, ) =

5 5 (9)
_ (1, &) (31?2,52)7 fcw, G =0, ten,
hihs

where £ = (£1,&2) and 6(r, s) is the Kronecker symbol.

Note that in (9) and further throughout the paper the subscript £ means
a finite difference in the variable £ = (&1,&2), for example: A1G(z,&) =
kllGél& (x’é)

Now we prove the auxiliary proposition.
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Lemma 3. For Green’s function G(x,§), the following estimate holds true:
1

Gz, )| < plz), z€w, 10
166N < S o= o) (10)
U)’Lthp —mln{,/xla:g,\/xl l2—$2 \/IEQ ll—l’l \/(ll—l‘l)(lg—xg)}.
. . : I, s20,
Proof. Introducing the Heaviside step function H(z) = {0 _o e
? S )

rewrite problem (9) in the form
AfG(x7§) = _(H(xl _gl)H(‘rQ _62))51527 §Ew,
G(z,§) =0, &en,
and then reduce it to the operator equation
AeG(x,8) = —Bie(H(z1 — &) H (22 — £2)).

Applying here Lemma 2, we get

|H (= ) Hza =)l _

2(Vk11kae — |k12|)

1 1/2
= hyho H2 (21 — &) H2 (29 — } _
2(m—|km>{ge+zx+ thol e = &) @2 ) (11)

h h = .
(\/klleQ — |k12|) { Z l} {522,22 2} 2(Vki1kaz — |k12|)

Now we put problem (9) in a dlfferent way:

AeG(2,6) = —(H(&1 —21)H(&2 — 22)) g g, €W,
G(x7§):07 §€,

and then rewrite it as the operator equation
AcG(x,€) = —Boe (H(&1 — 21)H (9 — m2)).

Employing here Lemma 2, we obtain

G, ) < || = A" BieH (w1 — ) H (x2 — )| <

) |H(- — ) H(- = x2)|2
1G(z, )| < || - Af 1ngH(- —z1)H (- — z2)|| < 2(\/@_ \k12|) o

= = { S mhpHX(E —2)H (6 — @ >}1/2— (12)

= 2(«/I<:11k:22—|k12|) e 112 1 1 2 2 =

B —h 1/2 —ha 1/2 B \/(ll — 1’1)(12 — $2)
(\/k‘llk‘zz — |/€12| { Z hl} { 22932 h2} N 2(\/]4511]4522 - |k’12‘) .

Next we express problem ( ) as follows:
AgG(l‘,g) = (H(xl _gl)H(§2_$2))€152’ fGW,
G(:L" 5) = 07 6 6 77
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which means the operator formulation
AeG(z, &) = B (H (&1 — 1) H (& — x2)).

Making use of Lemma 2, we have
|H(ay — H( —z)lls _
2(Vki1ka2 — |k12|)

IG(, ) < || = Ag ' BseH (w1 — ) H (- — a2)|| <

1 ) ) 1/2
— 2(\/%_ ‘k’12|) { Z hihoH*(z1 — &1)H (&2 — 1;2)} = (13)

+ —
Ew] Xwsy

1/2 ha 1/2 B (a2 — 22)
(vknsz— |k12|) { Z hl} { Z h2} - 2(VEikaa — |k12])

§a=x2

Finally, we can formulate problem (9) as that:
AgG(ZL‘,f) = (H(gl —:U1)H($2—§2))§-1£2, gewa
G(z,§) =0, €,
which yields the operator equation
AeG(x,€) = Bug(H (& — 1) H (2 — &)).
Due to Lemma 2, we get
|H (- — x1)H(x2 — )4 _
2(Vki1ka2 — |k12|)

G, ) < || = A ' BagH (w1 — ) H (- — )| <

1 1/2
= hh2H2§—x1H2x2—§2} = (14
2(\/]4211]{322 — ‘k12|) { e ; . 1 ( 1 ) ( ) ( )
Wy XWy
1 1/2 1/2
= hng} { hH%g} =
 2(VEiikas — |kr2) { Z He ) s§+ e = &)
wy W
hi 1/2 T2 1/2 I —
et S )
( k11k22 — |k12]) fim Pt 2(Vki1ka2 — |k12])
Combining estimates (11)-(14), we eventually come to the conclusion of the

lemma. O

4. THE WEIGHTED ERROR ESTIMATE
For the error z(x) = y(z) — u(x) we have the problem

Az = Az + Ao+ 20122 = (), = € w,

15
z2(x) =0, z€n, 1)
where () is the approximation error:
() =Tf(z) + Mu(x) + Asu(z) + 2Apu(x) =
(16)

= Mz121 + 2z520 + 2 Mazize>
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N (%) = koo (u(z) — Ts—qu(z)), a=1,2,
ma(z) = 0,5k12 (u(z) + u(zy + hi,z2 — he) — 257 S5 u(x)).

Further we use the relation 2712z,4, = k12 (u;clm2 + Upyzy — QTBQ?I(;; ) and a

conventional notation |u[y4p) for a seminorm in Wi(D):

2
OFrtkaqy (21, 19)
|U|W4(D) = { Z // ( T ’ dridxs
2 e D oxh?

(k;l >0, ko> >0

1/2

Lemma 4. Let the solution u(z) of problem (1) satisfy the condition u €
WH(D). Then for the approzimation error 1 (x) the following estimate holds
true:

11 < MAJ? Julyws p) (17)

8(k11 + k22)

7 + V1344 |k12| independent of u(x),

with a positive constant M =

hi, ha.
Proof. The representation (16) yields the inequality

||¢|| = Hnlflxl + T]2EQCC2 + 27]1251I2H g
(18)
< Hnlflxln + ||n2i2$2H + ”27712.@1332"'

Next we consider each of the three summands in (18). For n(z) we find the
representation

xo—ho

k
m(z) = ki (u(z) — Thu(z)) = }% / (ho — |x2 — &]) [u(z) — w1, §)] dE =
xo—ho
Ccz—hz T2
_ku g — Qu(z1,&1) o _
-5 /h (hs — | £|)d££/ st g -
i z2—ha a f ) 1 zo+h 2a ( f )
_ i e — du(z,&) 1 gulri,s2) _
=% _/h (2 ~ Iz — €] df/ [ - 2,12@_/}12 o d@] 61 =
z2—ho T2 z2+4-ho &1
—on [ (ha o2 - €l)ae [ des /+ d&/md@.
2h%x —h 13 zo—h & agg
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2

Bearing in mind the relation Tlﬁ

1
r14+-h1

[

z1—h1

k11

Mz1x1 (x) = T‘Sh%

o zot+h

za—ho

3
which gives the estimate

x1+h1
k11

2h3h?

|7]5c1x1 (x | =X
r1—h
x2+ha zo+ho

x/d&

x2—h2 x2—ho

{xlhl

z1+h
x{ /d§4

xz1—hy

9 x1+h1
k11h2 - 2hg - 2hy

2h3h?

X

/

x2—h2

< [ dey /2d§27

o
i& | ‘
o

z2+ho

= Uz, 4,, We have the equality

z2—ho

|21 — &a])ds (ha = [x2 — €]) déx

T2 —ha

O*u(&y, &)

d
oeioe

&2

z2—ha
|21 — &) dés (hg — |@g — £])dEx

z2—ho

O*u(&y, &)
DEFOE3

zo+ho
dés <

r9—ha
1/2

za+ha
/ dé&s } X

z2—ho
1/2

jof

1 — &) déy

O*u(&y, &)
DEFOE3

(

z1+h1 zo+ho 9 1/2
4k11 hQ{ / dés / <84u(f47§3)> dfg}
V3 06703
x1—h1 z2—ho
Thus we get
1/2
s | = { - muba (@)} <
TreEW
19
8k11h2{//‘8 w(w1, 2) dxld@}“z. )
O0x20x3
Similarly we can obtain the estimate
1/2
sl = { 3 e s, <x>} <
12 (20)
8]€22h2 { 1'1, .’L‘Q dxlde}
81‘%8 '
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Now we move on to the third summand in equation (18). Omitting some
technical details, we arrive at the representation

0%u
2Mmozyay = k12 (uxm + Ugyz, — 2T > =

89518:1:2
x1+h zo+ho
_ h d h
= 252 (h1 — |oy — &1])d&s (he — |22 — &) %
1'°2
CC1—h1 352—}12
O*u(&y, &)
T1T 1T -2 ) dés =
X |:u 1 Q(x)"’_u 1 2($) 651862 ] 52
x1+h1 zo+ho
:% / (h1 = |21 — &) d& / (hg — |22 — &) %
4hThs
x1—hq 1‘2*}7/2
z1+h1 x2 &3 z1+h1 xa+ho
x[/ dgs [ de [der [ den [ dens
1 z2—ha 61 x1—h1 ro—ha
7 0'u(ein, &) 7 0 u(en, &0)
U(G19, <4 U(S11, 620
——>>7 ———=(
X{ 963,06, 19 + 92,062, 520}4-
11 &12
z1+hy x2 &a r14+h1 x2+h2
v [ de [ dafas [ ane [ ode
1 T2—ho &2 z1—h1 z2—ho
T ot T 0ulEs )
U(S21, 68 U(S13, S22
X ———————dfo + | ———=""d&9 p+
{ ogg oz 0¢,3063, }
13 14
] zo+ha &s x1+h1 zo+ha
v [ e [ dafaa [ oaas [ deex
x1—h1 z2 &1 z1—hy x2—h2
7 0 ultas &) 7 0 uleus, )
U G235, S6 U(S15, 624
X ——>= " dls + | ————=—d&oy p+
{ 06,06 063063, 24}
&1s &16
x1 x2+h2 &6 x1+hy x2+ha
v [ de [ dafage [ odar [ daex
r1—h1 T2 P! z1—h1 x2—ho
7 0%u(Eas, £10) T 0%u(err, )
u(G25, 10 U(G17, S26
X ——> o5 + ——==22 d&s,
{5 06,00, BT | Toe,08, 526} ©
17 18
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where the following relations were used:

z1+h1 - x1+h1 1 -
(m-lor-al)| [ (@-edas [ (&-a)des|da=o.

xr1—h - T xr1—h -

zo+ha - T2 zo+ho -
(ho — |xa — &) / (&4 — &2) d&s + / (&6 — &2) d&e | dE2 = 0.

xo—ho “ro—ho x2 -

This yields the estimate

xo+ho 14+ 1/2
9 4\f|k‘12|\/ 84u(:n1,x2) 2d d
7712:2112@)‘ \/E W r104x2 +

xro—ho x1—h1

x1+h1 x2+ho

O*u(xy, x2) 2 12
+8|k‘12|\/h1h2{ / / <(92h22> d$2d$1} +
x10x5
x1—h1 xo—ho

x1+h1 x24+h 1/2
+4V€12|\/h§ 1/ 1 2/ S0y, w) de dz / T Ew
Vhi Ox10x3 201 ’ '

x1—h1 x2—hs

Employing the inequality (a + b+ ¢)? < 3(a® + b? + ¢?), we find
2
”277129?1332 ||2 E hth 27712w1x2) <

TEW

ot (1,22
128h4//< ’ > dridzo+
[ Ox301y 1
O*u(zy LUQ) O*u(zy, x0) 2
256h%h2 / / — 2 dad 64h; / / — 02 drad
+ 1hs aa;%ax% r1ax2 + 02103 r1ax2 |,
D

that is

12 7123, 25 ()| < [k12] V1344 |l ul g ). (21)
Combining inequalities (18)—(21), we come to estimate (17). The lemma is
proven. O

We finally arrive at the main proposition.

Theorem 2. Let the solution u(x) of problem (1) satisfy the condition u €

WHD). Then the accuracy of the difference scheme (3) is characterized by the
weighted estimate

z
max | 3

with the weight function p(x) defined in (10) and a constant M independent of
u(a:), hl, hg.

< M|hPlulwspy,  |B? = T+ B3, (22)
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Proof. The solution of problem (15) can be presented in the form
(@) = (Glz,),8()) = ) mhaG(z,€)9(€), = €w.
Eew
Due to Lemma 3 and Lemma 4, we get

|2(2)] = [(G (2, ), ()| < ||G(z, )| 9]l <
o p(x)
= 2 (VEiikas — |ki2])

which leads to (22) with the constant

M- M _ 4(k11 + ko2) + 12\ﬁ‘k12’
2(Vki1kaz — |k12]) V3 (VEi1kaz — |ki2|)

The theorem is proven.

M‘h‘2‘u|W24(D)7

|

Remark 2. The functionals Mz, z,, M2zozes 212212, 0 Lemma 4 can be esti-
mated by means of the Bramble — Hilbert lemma (see [12], p. 29), however, with

the unknown constants M and M in (17) and (22) respectively.

Remark 3. The weighted estimate (22) shows the influence of Dirichle’s bound-
ary condition and clearly indicates that the accuracy order of the finite-difference

scheme (17) in the wuniform norm is O(\h|2h}/2), O(|h[2h;/2), and

O(|h|2(h1hg)1/2) near the veriical sides x1 = 0, x1 = l1, near the horizont
sides xo = 0, x9 = la, and near the vertices of the rectangle D respectively.

al

BIBLIOGRAPHY
Makarov V. On a priori estimate of difference schemes giving an account of the boundary
effect / V. Makarov // Proceedings of the Bulgarian Academy of Sciences. — 1989. - Vol. 42,
Neh.— P.41-44.
Galba E.F. The order of exactness of a difference scheme for the Poisson equation with
a mixed boundary condition /E.F.Galba //In: Optimization of Software Algorithms.—
1985.— Vol. 10. — Kyiv: Akad. Nauk Ukrain. SSR, Inst. Kibernet. — P. 30-34. (in Russian).
MolchanovI.N. On the convergence of the difference scheme approximating the Dirich-
let problem for an elliptic equation with piecewise constant coefficients / I.N. Molchanov,
E.F. Galba //In: Numerical methods and technology for the development of applied soft-
ware packages.— 1990.— Kyiv: Akad. Nauk Ukrain. SSR, Inst. Kibernet.— P.161-165. (in
Russian).
Makarov V.L. Weight uniform accuracy estimate of finite-difference method for Poisson
Equation taking into account boundary effect / V.L. Makarov, L.I. Demkiv //In: Numer-
ical Analysis and Its Application, 4th International Conference, Lozentz, Bulgaria, June
16-20, 2008.— P.92-103.
MaykoN.V. The finite-difference scheme of higher order of accuracy for the two-
dimensional Poisson equation in a rectangle with regard for the effect of the Dirichlet
boundary condition /N.V.Mayko // Cybernetics and Systems Analysis. — 2018. - Vol. 54,
Ned.— P.624-635.
Makarov V.L. The accuracy estimates of the difference schemes for parabolic equa-
tions which take into account the initial-boundary effect /V.L. Makarov, L.I Lemkiv
// Reports of the National Academy of Sciences of Ukraine. — 2003.— Ne2.— P. 26-32.
Makarov V.L. Accuracy estimates of differences schemes for quasi-linear parabolic
equations taking into account the initial-boundary effect /V.L. Makarov, L.I. Demkiv
// Computational Methods in Applied Mathematics. — 2003.— Vol. 3, Ned. — P. 579-595.

111



N. V. Mayko, V. L. Ryabichev

10.

11.

12.

13.

14.

MaykoN.V. Error Estimates of the Finite-Difference Scheme for a Omne-Dimensional
Parabolic Equation with Allowance for the Effect of Initial and Boundary Conditions
/N.V.Mayko // Cybernetics and Systems Analysis. — 2014. — Vol. 50, Ne 5. — P. 788-796.
MaykoN.V. The boundary effect in the error estimate of the finite-difference scheme
for the two-dimensional heat equation /N.V.Mayko //Journal of Computational and
Applied Mathematics. — 2013. - Ne 3 (113). - P. 91-106.

MaykoN.V. Improved Accuracy Estimates of the Difference Scheme for the Two-
Dimensional Parabolic Equation with Regard for the Effect of Initial and Boundary
Conditions /N.V. Mayko // Cybernetics and Systems Analysis. — 2017.— Vol. 53, Ne1.—
P.83-91.

Samarskii A.A. The Theory of Difference Schemes / A.A. Samarskii. - New-York: Marcel
Dekker, Inc., 2001. - 762 p.

Samarskii A.A. Difference Schemes Differential Equations with Generalized Solutions
/ A.A. Samarskii, R.D. Lazarov, V.L. Makarov. — Moscow: Vysshaya Shkola, 1987.— 296 p.
(in Russian).

Mayko N.V. Boundary Effect in the Error Estimate of the Finite-Difference Scheme for
Two-Dimensional Poisson’s Equation /N.V.Mayko, V.L. Ryabichev // Cybernetics and
Systems Analysis. — 2016.— Vol. 52, Ne 5. — P. 758-769.

MaykoN.V. A Weighted Error Estimate for a Finite-Difference Scheme of Increased
Approximation Order for a Two-Dimensional Poisson Equation with Allowance for
the Dirichlet Boundary Condition /N.V.Mayko // Cybernetics and Systems Analysis. —
2018.— Vol. 54, Ne1.— P.130-138.

N.V.MAavko, V. L. RYABICHEV,

TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIv,
IVAN FRANKO NATIONAL UNIVERSITY OF Lviv,

64/13 VOLODYMYRSKA STR., 01601, KyIv, UKRAINE.

112

Received 18.08.2021; revised 16.09.2021.



