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INTEGRAL EQUATION METHOD FOR BOUNDARY VALUE

PROBLEMS IN MULTIPLY CONNECTED DOMAINS

FOR THE TWO-DIMENSIONAL LAPLACE EQUATION

Yu.M. Sybil

Ðåçþìå. Ðîçãëÿäàþòüñÿ çàäà÷i Äiðiõëå òà Íåéìàíà äëÿ äâîâèìiðíîãî
ðiâíÿííÿ Ëàïëàñà â îáëàñòi îáìåæåíié äâîìà ãëàäêèìè çàìêíóòèìè êîí-
òóðàìè. Ðîçâ'ÿçîê çàäà÷ ïîäà¹òüñÿ ó âèãëÿäi ñóìè ïîòåíöiàëiâ ïîäâiéíîãî
øàðó ç íåâiäîìèìè ãóñòèíàìè. Äîñëiäæåíî ïèòàííÿ iñíóâàííÿ òà ¹äèíîñòi
ðîçâ'ÿçêiâ ïîñòàâëåíèõ çàäà÷ ó âiäïîâiäíèõ ôóíêöiîíàëüíèõ ïðîñòîðàõ.
Âèêîðèñòîâóþ÷è iíòåãðàëüíå ïîäàííÿ ðîçâ'ÿçêiâ âèõiäíi äèôåðåíöiàëüíi
çàäà÷i çâåäåíi äî ñèñòåì ãðàíè÷íèõ iíòåãðàëüíèõ òà ñèíãóëÿðíèõ iíòåãðî-
äèôåðåíöiàëüíèõ ðiâíÿíü. Îñêiëüêè îòðèìàíi ñèñòåìè ìàþòü íå ¹äèíèé
ðîçâ'ÿçîê, çàïðîïîíîâàíî ïiäõiä íà îñíîâi âèêîðèñòàííÿ ìîäèôiêîâàíèõ
ñèñòåì ãðàíè÷íèõ ðiâíÿíü, ðîçâ'ÿçêè ÿêèõ ¹ ¹äèíèìè. ßê íàñëiäîê ìè
îòðèìó¹ìî øóêàíi ãóñòèíè iíòåãðàëüíîãî ïîäàííÿ ðîçâ'ÿçêiâ çàäà÷ Äiðiõ-
ëå òà Íåéìàíà, ÿêi çàäîâîëüíÿþòü ïåâíèì iíòåãðàëüíèì ñïiââiäíîøåííÿì.

Abstract. We consider Dirichlet and Neumann boundary value problems for
the two-dimensional Laplace equation in multiply-connected domain bounded
by two smooth closed curves. The solutions of this problems we present as
a sum of potentials of double layer with unknown densities. Existence and
uniqueness of solutions of the posed problems in appropriate functional spaces
is proved. Using integral representation of solutions of the initial boundary
value problems we obtain some systems of boundary integral and singular
integro-di�erential equations. Inasmuch the obtained systems have not unique
solutions we consider some approach based on modi�ed system of boundary
equations which have unique solutions. As a result we get densities of integral
representations of the solutions of the Dirichlet and Neumann boundary value
problems which satis�es some additional integral conditions.

1. Introduction

Using of the boundary equation method for solving of boundary value prob-
lems in many cases gives us opportunity to apply di�erent types of integral
representations of solution of initial di�erential problem. At the same time
depending on the type of representation we obtain solutions whose di�erential
properties essentially di�er if we consider the jump through the boundary of
domain. Also obtained boundary equations have principally di�erent properties
depend on integral representation. For instance this equations may have not
unique solutions and solutions itself may satisfy some additional conditions. As
a result we get systems of boundary equations which have not unique solutions

Key words. Dirichlet and Neumann boundary value problems; double layer potentials;
integral and singular integro-di�erential equations.
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and during the numerical solving of this systems we are needed to pose addi-
tional integral conditions which on its turn complicates theoretical analysis of
convergence.

In [5,7] for solving of the such type equations it was proposed the procedure
of using certain modi�cated equations whose solutions are unique. In [8] it
was considered general approach for solving of linear equations with not unique
solutions based on some extension of the given operators.

In addition when we construct mathematical models of some physical pro-
cesses it is necessary to take into account certain transmission conditions. For
instance such as a continuity of the solution of boundary value problem itself
or his normal derivative in the transition through the boundary of the domain.
This imposes some restrictions on the integral representation that on its turn
narrows the choice of the boundary data for which the solution exists.

In present paper we consider Dirichlet and Neumann boundary value prob-
lems in domain which boundary consists of the two smooth closed curves such
that one of them lies inside of another. The solutions of these problems we
look for as a sum of the potentials of the double layer over the given curves.
Using boundary conditions we can reduce di�erential problems to the systems
of boundary equations and main problem is that these systems have not unique
solutions. Thus we try to solve some modi�cated systems and show the unique-
ness and existence of their solutions. As a result we get the choosing densities of
the integral representation which gives us the solutions of the initial boundary
value problems.

2. Functional spaces and trace operators

Let Ω1,Ω2 ⊂ R2 are bounded connected domains. Their boundary curves
Σ1,Σ2 ∈ C1,α and have no self-intersections. Ωi = Ωi∪Σi, i = 1, 2. We suppose
that Ω2 ⊂ Ω1, diamΩ2 ̸= 1 and denote Ω = Ω1 \ Ω2, Ω− = R2 \ Ω1. We can
de�ne outward pointing unit normal n⃗x and tangent unit vector s⃗x respectively
for Ω1 and Ω2, x ∈ Σ1 or x ∈ Σ2.

In Ω we consider the Laplace operator

Lu = −∆u = −
2∑

i=1

(
∂u

∂xi

)2

and fundamental solution of L

Q(x, y) =
1

2π
ln

1

|x− y|
, x ̸= y, LxQ(x, y) = δ(|x− y|).

We use the Hilbert spaces H1(Ω) and H1(Ω, L) of real functions with
norms and inner products

∥u∥2H1(Ω) =

∫
Ω

{
|∇u|2 + u2

}
dx,

(u, v)H1(Ω) =

∫
Ω
{(∇u,∇v) + uv} dx,

∥u∥2H1(Ω,L) = ∥u∥2H1(Ω) + ∥Lu∥2L2(Ω),
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(u, v)H1(Ω,L) = (u, v)H1(Ω) + (Lu,Lv)L2(Ω).

We have the following trace operators in Ω1, Ω and Ω− which are continuous
and surjective [1, 4]:

γ0 = (γ+0,1, γ
−
0,2) : H

1(Ω) → H1/2(Σ1)×H1/2(Σ2),

γ−0,1 : H
1(Ω−) → H1/2(Σ1), γ+0,2 : H

1(Ω2) → H1/2(Σ2),

γ1 = (γ+1,1, γ
−
1,2) : H

1(Ω, L) → H−1/2(Σ1)×H−1/2(Σ2)

γ−1,1 : H
1(Ω−, L) → H−1/2(Σ1), γ+1,2 : H

1(Ω2, L) → H−1/2(Σ2).

Here H−1/2(Σi) = (H1/2(Σi))
′, i = 1, 2.

We use the �rst Green's formula in Ω for u ∈ H1(Ω, L) and v ∈ H1(Ω):∫
Ω
(∇u,∇v)dx = (Lu, v)L2(Ω) + ⟨γ+1,1u, γ0,1v⟩ − ⟨γ−1,2u, γ

−
0,2v⟩. (1)

Here ⟨·, ·⟩ are relations of duality between H1/2(Σ1), H
−1/2(Σ1) and H1/2(Σ2),

H−1/2(Σ2) respectively.

For τ1 ∈ H−1/2(Σ1), µ1 ∈ H1/2(Σ1) we consider the following potentials in
Ω1 ∪ Ω−:

V1τ1(x) =

∫
Σ1

Q(x, y)τ1(y)dsy, W1µ1(x) =

∫
Σ1

∂Q(x, y)

∂ny
µ1(y)dsy.

Potentials of simple V1τ1 and double layers W1µ1 satisfy the jump relations
which can be written in the next form [1].

Lemma 1. Let τ1 ∈ H−1/2(Σ1), µ1 ∈ H1/2(Σ1) and [γ0,1] = γ+0,1 − γ−0,1,

[γ1,1] = γ+1,1 − γ−1,1. Then:

1.[γ0,1]V1τ1 = 0, [γ1,1]V1τ1 = τ1.
2.[γ0,1]W1µ1 = −µ1, [γ1,1]W1µ1 = 0.

If we introduce the operators

N1τ1 =
1

2
(γ+1,1V1τ1 + γ−1,1V1τ1), M1µ1 =

1

2
(γ+0,1W1µ1 + γ−0,1W1µ1),

we can rewrite jump relations as

γ±1,1V1τ1 = ±1

2
τ1 +N1τ1, γ±0,1W1µ1 = ∓1

2
µ1 +M1µ1,

where

M1µ1(x) =

∫
Σ1

∂Q(x, y)

∂ny
µ1(y)dsy, x ∈ Σ1.

Let us denote: H1 = γ±1,1W1, B
±
1 = γ±1,1V1, C

±
1 = γ±0,1W1.

If τ1 ∈ L2(Σ1) then

N1τ1(x) =

∫
Σ1

∂Q(x, y)

∂nx
τ1(y)dsy, x ∈ Σ1.

In the same way we consider potentials of simple and double layers for the
curve Σ2. Index 1 or 2 will be connected with curve Σ1 or Σ2 respectively.
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3. Dirichlet boundary value problem

Let us state the following boundary value problem in domain Ω.
Problem D. Find a function u ∈ H1(Ω) that satis�es

Lu = −∆u = 0 in Ω,

and boundary conditions

γ+0,1u = g1, γ−0,2u = g2. (2)

Here gi ∈ H1/2(Σi), i = 1, 2, are given.

Since the trace operator γ0 : H
1(Ω) → H1/2(Σ1)×H1/2(Σ2) is surjective it's

easy to verify that problem D has unique solution for arbitrary gi ∈ H1/2(Σi),
i = 1, 2.

We look for the solution of the problem D as a sum of potentials of the
double layer:

u(x) = W1µ1 +W2µ2. (3)

Here µ1 = γ+0,1u− γ−0,1u, µ2 = γ+0,2u− γ−0,2u.
This approach is connected with boundary value problem for stationary heat

equation in domain Ω when heat �ows through the boundaries Σ1 and Σ2 are
continuous.

Then the solution of the problem D satis�es the next conditions:

⟨γ+1,1u, ν0⟩ = 0, ⟨γ−1,2u, µ0⟩ = 0. (4)

Here C+
1 ν0 = 0, ν0(x) = 1, x ∈ Σ1, C

−
2 µ0 = 0, µ0(x) = 1, x ∈ Σ2.

If we use boundary conditions (2) we obtain the following system of integral
equations: {

C+
1 µ1 +W2,1µ2 = g1,

W1,2µ1 + C−
2 µ2 = g2,

(5)

where W2,1µ2(x) = γ+0,1W2µ2(x) and W1,2µ1(x) = γ−0,2W1µ1(x).

The integral representation (3) of the solution u of problem D via the sum
of potentials of double layer is connected with the following Dirichlet boundary
value problem of transmission type.
Problem DT . Find a function u ∈ H1(Ω2)∪H1(Ω)∪H1(Ω−) that satis�es

Lu = −∆u = 0 in Ω2 ∪ Ω ∪ Ω−,

boundary conditions {
γ+0,1u = g1, γ−0,2u = g2,

γ+1,1u = γ−1,1u, γ+1,2u = γ−1,2u,

and condition at in�nity
lim

|x|→∞
u(x) = 0,

where gi ∈ H1/2(Σi), i = 1, 2.
The problem DT is equivalent to the system (5), i.e. solution of the problem

DT has representation (3), where µ1, µ2 are solutions of the system (5) and
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vice versa the function (3) where µ1, µ2 are solutions of the system (5) is a
solution of the problem DT .

Let us note that function u = W2µ0 is a solution of the problem DT with
boundary conditions g1 = 0, g2 = 0.

Since the system (5) has not unique solution, i.e. homogeneous system has
solution (0, µ0), instead of the system (5) we will use the following modi�cated
system: {

C+
1 µ1 +W2,1σ2 = g1,

W1,2µ1 + C−
2 σ2 + (σ2, µ0)L2(Σ2)µ0 = h2.

(6)

We can rewrite the system (6) in the next integral form:

−1

2
µ1(x) +

∫
Σ1

∂Q(x, y)

∂ny
µ1(y)dsy+

+

∫
Σ2

∂Q(x, y)

∂ny
σ2(y)dsy = g1(x), x ∈ Σ1,∫

Σ1

∂Q(x, y)

∂ny
µ1(y)dsy +

1

2
σ2(x)+

+

∫
Σ2

{∂Q(x, y)

∂ny
+ 1}σ2(y)dsy = h2(x), x ∈ Σ2.

Theorem 1. The system (6) has unique solution (µ1, σ2) for arbitrary g1 ∈
H1/2(Σ1), h2 ∈ H1/2(Σ2).

Proof. Let g1 = 0, h2 = 0 and µ1, σ2 are the solutions of the following homo-
geneous system {

C+
1 µ1 +W2,1σ2 = 0,

W1,2µ1 + C−
2 σ2 + (σ2, µ0)L2(Σ2)µ0 = 0.

From [8] we obtain σ2 = µ2+
α
cg
µ0, where (µ2, µ0)L2(Σ2) = 0, cg = ∥µ0∥2L2(Σ2)

=

|Σ2| - the length of the curve Σ2 and α = (σ2, µ0)L2(Σ2). Then W2,1σ2 = W2,1µ2

and µ1, µ2 are the solutions of the system{
C+
1 µ1 +W2,1µ2 = 0,

W1,2µ1 + C−
2 µ2 = −αµ0.

(7)

Then the function u = W1µ1 + W2µ2 is a solution of the problem D with
condition g1 = 0 and g2 = −αµ0.

From the �rst Green's formula (1) it follows:∫
Ω
|u(x)|2dx = ⟨γ+1,1u, γ

+
0,1u⟩ − ⟨γ−1,2u, γ

−
0,2u⟩ =

= α⟨γ−1,2u, µ0⟩ = α⟨γ+1,2u, µ0⟩ = 0.

Thus u(x) = const, x ∈ Ω. Since γ+0,1u = 0 then u(x) = 0, x ∈ Ω. Also

using jump relations we have γ−1,1u = γ+1,1u = 0. If x ∈ Ω− then function u is a
solution of the Neumann problem for the Laplace equation in Ω− with boundary
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condition γ−1,1u = 0 and condition at in�nity lim|x|→∞ u(x) = 0. Thus u(x) = 0,

x ∈ Ω− and γ−0,1u = 0. Inasmuch µ1 = γ+0,1u − γ−0,1u we have µ1 = 0. From

the system (7) we obtain C−
2 µ2 = −αµ0. Since (µ2, µ0)L2(Σ2) = 0 from [5, 6]

it follows that α⟨τ2, µ0⟩ = 0 where γ+0,2V2τ2 = 1. So far as ⟨τ2, µ0⟩ ̸= 0 [8] we

have α = 0. Then C−
2 µ2 = 0 and µ2 = 0. As a consequence we have σ2 = 0.

Now we consider the existence of solution of the system (6). We can rewrite
system (6) in the following operator form:

Cµ⃗ =

(
C+
1 W2,1

W1,2 C−
2,1

)(
µ1

σ2

)
=

(
g1
h2

)
,

where µ⃗ = (µ1, σ2), C
−
2,1σ2 = C−

2 + (σ2, µ0)L2(Σ2)µ0.

Operator C : H1/2(Σ1)×H1/2(Σ2) → H1/2(Σ1)×H1/2(Σ2) and C = A+B
where

A =

(
C+
1 0
0 C−

2,1

)
, B =

(
0 W2,1

W1,2 0

)
.

The operators C+
1 : H1/2(Σ1) → H1/2(Σ1) and C−

2,1 : H
1/2(Σ2) → H1/2(Σ2)

are isomorphisms [5, 8].

Thus the operator A : H1/2(Σ1) × H1/2(Σ2) → H1/2(Σ1) × H1/2(Σ2) is
isomorphism.

So far as operators W2,1 : H1/2(Σ2) → H1/2(Σ1) and W1,2 : H1/2(Σ1) →
H1/2(Σ2) are compact [3, 6], then operator B : H1/2(Σ1) × H1/2(Σ2) →
H1/2(Σ1)×H1/2(Σ2) is compact.

As a consequence we have that operator C : H1/2(Σ1) × H1/2(Σ2) →
H1/2(Σ1)×H1/2(Σ2) is a Fredholm operator of index zero and the system (6)

has unique solution for arbitrary g1 ∈ H1/2(Σ1), h2 ∈ H1/2(Σ2). �

Theorem 2. The problem D has unique solution for arbitrary g1 ∈ H1/2(Σ1)
and for g2 = h2 − (σ2, µ0)L2(Σ2)µ0, where σ2 is solution of the system (6) and

h2 ∈ H1/2(Σ2) is arbitrary.
If (µ1, σ2) is a solution of the system (6), then the function u = W1µ1 +

W2µ2, where µ2 = σ2 − (σ2,µ0)L2(Σ2)

∥µ0∥2L2(Σ2)

µ0 and (µ2, µ0)L2(Σ2) = 0, is a solution

of the problem D with boundary conditions g1 ∈ H1/2(Σ1) and g2 = h2 −
(σ2, µ0)L2(Σ2)µ0, h2 ∈ H1/2(Σ2).

Proof. Let g1 ∈ H1/2(Σ1), h2 ∈ H1/2(Σ2) are given and (µ1, σ2) is the solution

of the system (6). If µ2 = σ2 −
(σ2,µ0)L2(Σ2)

∥µ0∥2L2(Σ2)

µ0 then (µ2, µ0)L2(Σ2) = 0 and the

function u(x) = W1µ1 + W2σ2 = W1µ1 + W2µ2 is a unique solution of the
problem D with boundary condition γ+0,1u = g1, γ

−
0,2u = h2 − (σ2, µ0)L2(Σ2)µ0.

�
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4. Neumann boundary value problem

Problem N . Find a function u ∈ H1(Ω) that satis�es

Lu = −∆u = 0 in Ω,

γ+1,1u = f1, γ−1,2u = f2. (8)

Here fi ∈ H−1/2(Σi), i = 1, 2, are given.
It's well known that problem N has solution u(x) + c, where c is constant,

if f1 and f2 satisfy condition ⟨f1, ν0⟩ − ⟨f2, µ0⟩ = 0.
If we look for the solution of the problem N as a sum of potentials of double

layer (3), where µ1 = γ+0,1u− γ−0,1u, µ2 = γ+0,2u− γ−0,2u, then the solution of the

problem N satis�es the conditions (4) or

⟨f1, ν0⟩ = 0, ⟨f2, µ0⟩ = 0. (9)

Using the boundary conditions (8) we obtain the following system of bound-
ary equations: {

H1µ1 +H2,1µ2 = f1,

H1,2µ1 +H2µ2 = f2,
(10)

where H2,1µ2(x) = γ+1,1W2µ2(x) and H1,2µ1(x) = γ−1,2W1µ1(x).
The integral representation of the solution u of the problem N as a sum of

potentials of double layer is connected with the following Neumann boundary
value problem of transmission type.
Problem NT . Find a function u ∈ H1(Ω2)∪H1(Ω)∪H1(Ω−) that satis�es

Lu = −∆u = 0 in Ω2 ∪ Ω ∪ Ω−,

boundary conditions {
γ+1,1u = f1, γ−1,2u = f2,

γ+1,1u = γ−1,1u, γ+1,2u = γ−1,2u,

and condition at in�nity

lim
|x|→∞

u(x) = 0.

The problem NT is equivalent to the system (10), i.e. solution of the problem
NT has representation (3), where µ1, µ2 are solutions of the system (10) and
vice versa the function (3,) where µ1, µ2 are solutions of the system (10) is a
solution of the problem NT .

Since the system (10) has not unique solution, i.e. homogeneous system has
solution (ν0, µ0), instead of the system (10) we will use the following modi�cated
system: {

H1σ1 + (σ1, ν0)L2(Σ1)ν0 +H2,1σ2 = h1,

H1,2σ1 +H2σ2 + (σ2, µ0)L2(Σ2)µ0 = h2,
(11)

where

h1 = f1 + c1ν0, h2 = f1 + c2µ0,

c1 = ∥ν0∥2L2(Σ1)
= |Σ1|, c2 = ∥µ0∥2L2(Σ2)

= |Σ2|.
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If σ1 ∈ H1(Σ1), σ2 ∈ H1(Σ2) system (11) has the next integral representa-
tion:



−
∫
Σ1

{∂Q(x, y)

∂sx

∂σ1(y)

∂sy
− σ1(y)}dsy−

−
∫
Σ2

∂Q(x, y)

∂sx

∂σ2(y)

∂sy
dsy = h1(x), x ∈ Σ1,

−
∫
Σ1

∂Q(x, y)

∂sx

∂σ1(y)

∂sy
dsy−

−
∫
Σ2

{∂Q(x, y)

∂sx

∂σ2(y)

∂sy
− σ2(y)}dsy = h2(x), x ∈ Σ2.

Theorem 3. The system (11) has unique solution (σ1, σ2) for arbitrary h1 ∈
H−1/2(Σ1), h2 ∈ H−1/2(Σ2).

Proof. Let h1 = 0, h2 = 0 and σ1, σ2 are the solutions of the following homo-
geneous system {

H1σ1 + (σ1, ν0)L2(Σ1)ν0 +H2,1σ2 = 0,

H1,2σ1 +H2σ2 + (σ2, µ0)L2(Σ2)µ0 = 0.
(12)

So far as the function u = W1σ1 +W2σ2 satis�es condition (4) or ⟨H1σ1 +
H2,1σ2, ν0⟩ = 0 from the �rst equation of (12) it follows that (σ1, ν0)L2(Σ1) = 0.
In the same way we have (σ2, µ0)L2(Σ2) = 0.

Thus function u = W1σ1 + W2σ2 is a solution of homogeneous problem N
and u(x) = const in Ω2∪Ω. Since σ2 = γ+0,2u−γ−0,2u we have σ2 = αµ0, α ∈ R.

From (σ2, µ0)L2(Σ2) = 0 we obtain σ2 = 0. In Ω− function u(x) = 0 because

γ−1,1u = 0 and lim|x|→∞ u(x) = 0. So far as σ1 = γ+0,1u−γ−0,1u we have σ1 = βν0,
β ∈ R, and σ1 = 0.

Thus system (11) has only trivial solution.
Now we consider the existence of solution of the system (11). We can rewrite

system (11) in the following operator form:

Hσ⃗ =

(
H1,1 H2,1

H1,2 H2,2

)(
σ1
σ2

)
=

(
h1
h2

)
,

where σ⃗ = (σ1, σ2), H1,1σ1 = H1σ1 + (σ1, ν0)L2(Σ1)ν0, H2,2σ2 = H2σ2 +
(σ2, µ0)L2(Σ2)µ0.

Operator

H : H1/2(Σ1)×H1/2(Σ2) → H−1/2(Σ1)×H−1/2(Σ2)

and

H = D+ F

where

D =

(
H1,1 0
0 H2,2

)
, F =

(
0 H2,1

H1,2 0

)
.
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The operators

H1,1 : H
1/2(Σ1) → H−1/2(Σ1)

and

H2,2 : H
1/2(Σ2) → H−1/2(Σ2)

are isomorphisms [8] .
Thus the operator

D : H1/2(Σ1)×H1/2(Σ2) → H−1/2(Σ1)×H−1/2(Σ2)

is isomorphism.
So far as operators H2,1 : H1/2(Σ2) → H−1/2(Σ1) and H1,2 : H1/2(Σ1) →

H−1/2(Σ2) are compact [2, 6] then operator F : H1/2(Σ1) × H1/2(Σ2) →
H1/2(Σ1)×H1/2(Σ2) is compact.

As a consequence we have that operator H : H1/2(Σ1) × H1/2(Σ2) →
H−1/2(Σ1) ×H−1/2(Σ2) is a Fredholm operator of index zero and the system

(11) has unique solution for arbitrary h1 ∈ H−1/2(Σ1), h2 ∈ H−1/2(Σ2). �

Theorem 4. If (σ1, σ2) is a solution of the system (11), then the function
u = W1µ1 +W2µ2, where µ1 = σ1 − ν0, (µ1, ν0)L2(Σ1) = 0 and µ2 = σ2 − µ0,
(µ2, µ0)L2(Σ2) = 0, is a solution of the problem N with boundary conditions

f1 ∈ H−1/2(Σ1) and f2 ∈ H−1/2(Σ2) which satisfy conditions (9).

Proof. We have ⟨H1σ1, ν0⟩ = 0 and ⟨H2σ2, µ0⟩ = 0 for arbitrary σ1 ∈ H1/2(Σ1),

σ2 ∈ H1/2(Σ2) [6]. Then from the �rst equation of the system (11) we get:

⟨H1σ1, ν0⟩+(σ1, ν0)L2(Σ1)∥ν0∥
2
L2(Σ1)

+⟨H2,1σ2, ν0⟩ = ⟨f1, ν0⟩+∥ν0∥4L2(Σ1)
. (13)

Let us consider functions w(x) = W2σ2(x) and v(x) = 1, x ∈ Ω. Then γ+0,1v =

ν0, γ
−
0,2v = µ0 and from the �rst Green's formula (1) we obtain:

0 = ⟨H2,1σ2, ν0⟩ − ⟨H2σ2, µ0⟩,

or ⟨H2,1σ2, ν0⟩ = 0. Thus from (13) it follows that (σ1, ν0)L2(Σ1) = ∥ν0∥2L2(Σ1)

and if µ1 = σ1 − ν0 then (µ1, ν0)L2(Σ1) = 0.
In the same way we can show that if µ2 = σ2 − µ0 then (µ2, µ0)L2(Σ2) = 0

and as a consequence we get that function u = W1µ1 + W2µ2 satis�es sys-
tem (11). �
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