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INTEGRAL EQUATION METHOD FOR BOUNDARY VALUE
PROBLEMS IN MULTIPLY CONNECTED DOMAINS
FOR THE TWO-DIMENSIONAL LAPLACE EQUATION

Yu. M. SYBIL

PE3itoME. Posragnatorsca 3amadi Hipixme ta Hefimana naag gsosuMipHOTO
piBHsaHH# Jlammaca B 06/1acTi 00MexkeHi TBOMA TVIAJKAMU 3aMKHY TUMH KOH-
Typamu. Po3B’s130K 33029 MOQAETHCS Y BUIVIS] CYMU ITOTEHIIAJIB IIOABIHHOTO
mapy 3 HeBiIOMUMHE TycTUHAMUA. J[OCTLIKeHO THTaHHS ICHYBAaHHS Ta €/TMHOCTL
PO3B’#3KiB IOCTABIEHNX 337129 y BiAMOBIAHUX (YHKIOHAIBHHX MIPOCTOPAX.
BukopucroByioun iHTerpajgbHe 0 IaHHS PO3B’'sI3KiB BUXiIHI JudepeHIiaabhi
3a7a¢l 3BeZeHi 0 CUCTEM TPAHUYHAX IHTErPATHHUX Ta CUHTYISPHUX IHTErPO-
nudepenrianbaux piBHgHb. OCKLIBKM OTPUMaHI CHCTEMH MAIOTh HE €IMHUN
PO3B’SI30K, 3aIpOTIOHOBAHO ITLIXIT HA OCHOBI BUKOPWCTAHHS MOIUMIKOBAHIX
CHCTEeM TPAHUYHUX PIBHAHB, PO3B’A3KM AKUX € €IUHUMH. 21K HACHIIOK MU
OTPUMYEMO IMIYKaHl TYCTUHA IHTErPAIbHOTO MIOJAHHA PO3B’sA3KiB 3ama4 Jlipix-
se Ta Hefimana, 9Ki 3a10BOIBHAIOTE IIEBHUM iHTeIPDAJIBHAM CHIBBITHOIIEHHAM.

ABsTrRACT. We consider Dirichlet and Neumann boundary value problems for
the two-dimensional Laplace equation in multiply-connected domain bounded
by two smooth closed curves. The solutions of this problems we present as
a sum of potentials of double layer with unknown densities. Existence and
uniqueness of solutions of the posed problems in appropriate functional spaces
is proved. Using integral representation of solutions of the initial boundary
value problems we obtain some systems of boundary integral and singular
integro-differential equations. Inasmuch the obtained systems have not unique
solutions we consider some approach based on modified system of boundary
equations which have unique solutions. As a result we get densities of integral
representations of the solutions of the Dirichlet and Neumann boundary value
problems which satisfies some additional integral conditions.

1. INTRODUCTION

Using of the boundary equation method for solving of boundary value prob-
lems in many cases gives us opportunity to apply different types of integral
representations of solution of initial differential problem. At the same time
depending on the type of representation we obtain solutions whose differential
properties essentially differ if we consider the jump through the boundary of
domain. Also obtained boundary equations have principally different properties
depend on integral representation. For instance this equations may have not
unique solutions and solutions itself may satisfy some additional conditions. As
a result we get systems of boundary equations which have not unique solutions

Key words. Dirichlet and Neumann boundary value problems; double layer potentials;
integral and singular integro-differential equations.
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and during the numerical solving of this systems we are needed to pose addi-
tional integral conditions which on its turn complicates theoretical analysis of
convergence.

In [5,7] for solving of the such type equations it was proposed the procedure
of using certain modificated equations whose solutions are unique. In [8] it
was considered general approach for solving of linear equations with not unique
solutions based on some extension of the given operators.

In addition when we construct mathematical models of some physical pro-
cesses it is necessary to take into account certain transmission conditions. For
instance such as a continuity of the solution of boundary value problem itself
or his normal derivative in the transition through the boundary of the domain.
This imposes some restrictions on the integral representation that on its turn
narrows the choice of the boundary data for which the solution exists.

In present paper we consider Dirichlet and Neumann boundary value prob-
lems in domain which boundary consists of the two smooth closed curves such
that one of them lies inside of another. The solutions of these problems we
look for as a sum of the potentials of the double layer over the given curves.
Using boundary conditions we can reduce differential problems to the systems
of boundary equations and main problem is that these systems have not unique
solutions. Thus we try to solve some modificated systems and show the unique-
ness and existence of their solutions. As a result we get the choosing densities of
the integral representation which gives us the solutions of the initial boundary
value problems.

2. FUNCTIONAL SPACES AND TRACE OPERATORS
Let Q1,9 C R? are bounded connected domains. Their boundary curves
Y1, Y5 € C1 and have no self-intersections. ; = Q;UY;, 7 = 1,2. We suppose
that Qo C Qi, diam€s # 1 and denote Q = Q1 \ Oz, O = R?2\ ;. We can
define outward pointing unit normal 7, and tangent unit vector s, respectively
for Q1 and Qo, x € ¥y or x € Xo.
In 2 we consider the Laplace operator

2 ou \ 2
Lu-—Au-—Z(au@)

i=1

and fundamental solution of L

We use the Hilbert spaces H'(Q) and H(Q,L) of real functions with
norms and inner products

lullF 0y :/ﬂ{|vulz+“2}dl’7

(u,v) 1 () :/Q{(Vu, Vo) 4+ uv} dz,
lallZn 2y = lullin oy + 1 Zull 7,00
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(u,v) g,y = (W, v) () + (Lu, Lo) p,(0)-
We have the following trace operators in 21, Q and Q_ which are continuous
and surjective [1,4]:

Y = (Y1 Y00) : H(Q) = HY2(S1) x HY/2(S,),
Yoot HYQZ) = HY2(S1), gyt HY(Q2) — HY?(%),
n= 0 ve) s HY QL) — HV2(S)) x H V2 (5,)
at HY Q- L) —» HV2(%y), vyt HY (D, L) — HV2(S).

Here H'/2(%;) = (HY2(%))), i =1,2.
We use the first Green’s formula in  for v € H'(2, L) and v € H'():

/Q (Vai, Vo) = (L, 0) oy + (1 7010) — (Vg r5at). (1)

Here (-,-) are relations of duality between H'/2(X;), H='/2(%;) and H'/?(%),
H~1/2(%y) respectively.

For 1 € H-12(%1), s € HY2(%1) we consider the following potentials in
QuUO_:

Win) = [ Qunis, W) = [ 2480 )as,
1 1 Y

Potentials of simple V17 and double layers Wiy satisfy the jump relations
which can be written in the next form [1].

Lemma 1. Let 7, € H'Y?3(X)), ;1 € HY?(%y) and [y01] = 7&1 = Y015

(v1.1] = 7{1 —Ma- Then:
LlvoiVimi =0, [yaVim =71
2o IWip = —p1,  [ma]Wip =0.

If we introduce the operators

1 _ 1 _
Nim = 5(7i1V171 + '7171‘/17'1)7 Miyp = E(V(J)r,lwllul +’70,1W1,U«1)7

we can rewrite jump relations as
+ 1 + 1
1aVin = i§T1 + Nimi, o Wi = Fom + My,
where

0Q(x,
M) = [ ZEED gas,, we s
P ny
Let us denote: H; = ﬁleh Bli = Wfflvla Cf[ = ’Y(jflwl-

Iftr e LQ(El) then

b AL/
ong

In the same way we consider potentials of simple and double layers for the
curve Y. Index 1 or 2 will be connected with curve ¥ or X9 respectively.

NlTl(x):/E 9Q(x,y) (y)dsy, x€X.
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3. DIRICHLET BOUNDARY VALUE PROBLEM

Let us state the following boundary value problem in domain €.
Problem D. Find a function u € H(2) that satisfies

Lu=—-Au=0 in £,
and boundary conditions
7&1“ =41, V0,2 = 92- (2)
Here g; € HY?(%;), i = 1,2, are given.

Since the trace operator v : H(Q) — HY/2(X1) x HY2(5,) is surjective it’s
easy to verify that problem D has unique solution for arbitrary g; € HY/2(%;),
i=1,2.

We look for the solution of the problem D as a sum of potentials of the
double layer:

u(z) = Wi + Waps. (3)

Here p1 = Y9 U — 751U, H2 = Yool — Yo 2U-

This approach is connected with boundary value problem for stationary heat
equation in domain €2 when heat flows through the boundaries 31 and 39 are
continuous.

Then the solution of the problem D satisfies the next conditions:

(vfyuvo) = 0, (i 9u, o) = 0. (4)

Here Cf g =0, vo(z) =1, 2 € 51, Cy po =0, po(z) =1, € s
If we use boundary conditions (2) we obtain the following system of integral
equations:

{ Cfrﬂl + Wap2 = g1, (5)

Wip + Cy 2 = go,

where Wo 1 ps(x) = ’y[ileug(:c) and Wi a2p1(z) = 75 o Wipi1 ().
The integral representation (3) of the solution v of problem D via the sum
of potentials of double layer is connected with the following Dirichlet boundary

value problem of transmission type.
Problem DT. Find a function u € H'(Q2) UH(Q)U H'(Q_) that satisfies

Lu=—-Au=0 in QUQUO_,
boundary conditions
{ ’Y(J)r,1u = 91, Yo,2U = 92,
’Yfr,lu = V11U ’thﬂ = V1,2
and condition at infinity

lim wu(z) =0,
|z| =00

where g; € HY2(%;), i =1,2.
The problem DT is equivalent to the system (5), i.e. solution of the problem
DT has representation (3), where 1, g are solutions of the system (5) and
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vice versa the function (3) where p1, po are solutions of the system (5) is a
solution of the problem DT.

Let us note that function u = Waug is a solution of the problem DT with
boundary conditions g1 = 0, g2 = 0.

Since the system (5) has not unique solution, i.e. homogeneous system has
solution (0, 1), instead of the system (5) we will use the following modificated
system:

{ CiHun + W02 = g, ©)

Wi ap + C5 a2 + (02, f10) Ly (530) M0 = ha.
We can rewrite the system (6) in the next integral form:

1 0
—5m (@) +/E C39(:;y)m(y)dSzﬂr
+/2 (magzwaz(y)d% =q(x), =€,
9 Yy
o 1
/21 %(;fy’y)m(y)dsy +502(2)+
+ ) {(%ga(nw +1}oa(y)dsy = ha(x), = € Ba.
5 Y

Theorem 1. The system (6) has unique solution (u1,02) for arbitrary g1 €
HY2(4), ho € HY2(E,).

Proof. Let g1 =0, ho = 0 and 3, o2 are the solutions of the following homo-
geneous system

Clpy + Wapog =0,
Wi a1 + Cy 03 + (02, f10) Ly (59) 0 = 0.
From [8] we obtain o9 = M2+%HO’ where (MQ,MO)LZ(EZ) =0,¢5 = ||M0”2L2(22) —

|22| - the length of the curve X9 and o = (o2, MO)L2(22)~ Then Wa 100 = Wa 112
and p1, o are the solutions of the system

{ O p1 + Wapis = 0,

_ (7)
Wiopt + Cy o = —ayip.
Then the function v = Wiu; + Waus is a solution of the problem D with
condition g1 = 0 and g3 = —auy.
From the first Green’s formula (1) it follows:

/Q (@) Pz = (v i) — (Vi ) =

= a<71_72u7/’t0> = a<7i~:2u7,u’0> =0.
Thus u(z) = const, x € Q. Since 7&1“ = 0 then u(z) = 0, z € Q. Also

using jump relations we have v, ju = VIW =0. If z € Q_ then function v is a
solution of the Neumann problem for the Laplace equation in _ with boundary
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condition 7y ;u = 0 and condition at infinity lim|;| o u(2) = 0. Thus u(z) = 0,
x € Q_ and Yoat = 0. Inasmuch p; = fyar’lu — Yo,1v we have p1 = 0. From
the system (7) we obtain C5 pa = —apg. Since (p2, t0) 1,(s,) = 0 from [5, 6]
it follows that a(r2, po) = 0 where 7&2‘/272 = 1. So far as (72, po) # 0 [8] we
have a = 0. Then C5 o = 0 and po = 0. As a consequence we have o9 = 0.

Now we consider the existence of solution of the system (6). We can rewrite
system (6) in the following operator form:

Cr Wan\ (m 9
Ci= 1 - =
where [i = (11,02), Cy102 = Cy + (02, 0) Ly (5,) Ho-

Operator C : HY/2(1) x HY/2(3y) — HY2(2) x HY/?(23) and C = A+ B

where

A:Ci O_,B: 0 Wiy

The operators Cf : HY/2(%1) — HY/?(%;) and Cyq: HY2(S) — HY?(%y)
are isomorphisms [5, 8.

Thus the operator A : HY2(X1) x HY2(%y) — HY?(X1) x HY/?(%y) is
isomorphism.

So far as operators Wa : HY2(S3) — HY2($1) and Wio : HY2(%;) —
H'Y2(%y) are compact [3,6], then operator B : HY2(X;) x H/?(Xy) —
HY2(%) x HY?(%,) is compact.

As a consequence we have that operator C : HY2(X;) x HY/?(%,) —
HY2(%) x HY?(%,) is a Fredholm operator of index zero and the system (6)
has unique solution for arbitrary g1 € H'/?(X1), ho € HY?(5,). O

Theorem 2. The problem D has unique solution for arbitrary g1 € Hl/Q(Zl)
and for go = ha — (02, 110) 1,(5,) M0, where o3 is solution of the system (6) and
ho € H1/2(Eg) is arbitrary.

If (u1,02) is a solution of the system (6), then the function u = Wiy +

(02,40) Ly (2 ; ;
272(2)1110 and (,"L27 /’LO)LQ(EQ) = 0, 18 a SOlUtlon
Tl s,

of the problem D with boundary conditions g1 € HY?(X1) and gy = hy —
(02, 110) 1y (510, h2 € HY?(53).

Wapga, where pa = o9 —

Proof. Let g1 € HY/?(X1), hy € HY?(%5) are given and (u1, 02) is the solution

of the system (6). If us = o9 — muo then (p2, 110)1,(5,) = 0 and the

HN0”i2(22)
function u(z) = Wipr + Waog = Wiy + Wapug is a unique solution of the
problem D with boundary condition ’yaflu = g1, Yoot = h2 — (02, 110) L, (5,) Ho-
O
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4. NEUMANN BOUNDARY VALUE PROBLEM
Problem N. Find a function u € H*(f) that satisfies

Lu=—-Au=0 in £,

au=f, Yot = fo (8)
Here f; € H-Y/2(%;), i = 1,2, are given.
It’s well known that problem N has solution u(z) + ¢, where ¢ is constant,
if f1 and fo satisfy condition (f1,v9) — (f2, po) = 0.
If we look for the solution of the problem N as a sum of potentials of double
layer (3), where p; = ’y[}flu — Yo Us H2 = 'yar?Qu — Y02, then the solution of the
problem N satisfies the conditions (4) or

<f1: ’/0> =0, <f2, /L0> =0. (9)
Using the boundary conditions (8) we obtain the following system of bound-
ary equations:

{ Hypi + Ho 1o = f1, (10)

Hiyppi + Hapo = fo,

where Ha jpa(x) = 7I1W2,u2(9:) and Hyopi(z) = ’yi2W1,u1(:1:).

The integral representation of the solution u of the problem N as a sum of
potentials of double layer is connected with the following Neumann boundary
value problem of transmission type.

Problem NT. Find a function u € H*(Q) U HY(Q) U H'(Q_) that satisfies

Lu=—-Au=0 in QUQUQ_,
boundary conditions
{ = fi,  viu=fa
WAl =T1U VU= ViU

and condition at infinity
lim wu(z)=0.
|z| =00

The problem NT is equivalent to the system (10), i.e. solution of the problem
NT has representation (3), where py, po are solutions of the system (10) and
vice versa the function (3,) where u1, po are solutions of the system (10) is a
solution of the problem NT.

Since the system (10) has not unique solution, i.e. homogeneous system has
solution (v, po), instead of the system (10) we will use the following modificated
system:

{ Hio1 + (01,10) 1y (51) V0 + H2p09 = ha, (1)

Hi 201 + Haog + (02, 110) Lo(52) Mo = ha,
where
h1 = fi+cw, he = fi+ capo,

c1 = [wll7, s, = 21

;2= ol sy = 2ol
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If o1 € HY(X1), 02 € HY(X2) system (11) has the next integral representa-
tion:

9Q(z,y) 0o1(y)
AT o),
0Q(z,y) doa(y)

N 88$ 88y
[ st
s, Osz Osy Y
[ (99w 90w
PN 681 aSy

dsy = hi(z), x€ Xy,

—o02(y)}dsy = ha(z), x € Xo.

Theorem 3. The system (11) has unique solution (o1,02) for arbitrary hy €
HY2(%)), hy € HY2(5).

Proof. Let hy =0, ho = 0 and o1, 09 are the solutions of the following homo-
geneous system

{ Hyor + (01,0) y(5)v0 + H2p02 = 0, (12)

Hy 201 + Ha0g + (02, 110) Ly (55) Mo = 0.

So far as the function u = Wioy + Waos satisfies condition (4) or (Hio1 +
Hj102,v0) = 0 from the first equation of (12) it follows that (o1,v0)r,(n,) = 0.
In the same way we have (02, f10) 1,(5,) = 0.

Thus function v = Wyop + Waos is a solution of homogeneous problem N
and u(x) = const in Ly UQ. Since o9 = 7&2“‘7&2“ we have g9 = apug, a € R.
From (02, tt0)1,(s,) = 0 we obtain o2 = 0. In Q_ function u(z) = 0 because
Y1 1w = 0 and lim,| o u(z) = 0. So far as o1 = WJIU—W&IU we have o1 = Sy,
B €R,and o1 =0.

Thus system (11) has only trivial solution.

Now we consider the existence of solution of the system (11). We can rewrite
system (11) in the following operator form:

He — Hiy Hyp) (o1 _ (M
Hio Hso) \o2 ha)’

where ¢ = (01,02), Hi101 = Hio1 + (01,v0) =)V, H2200 = Haoo +

(o2, MO)LQ(EQ)MO-
Operator

H: H1/2(21) « H1/2(22) s H_1/2(21) « H—1/2(22)

and
H=D-+F

where
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The operators
and

are isomorphisms [§] .
Thus the operator

D : HY2(2)) x HY2(Sy) — H™Y2(2)) x HY2(5)

is isomorphism.

So far as operators Hap : HY?(X9) — H™Y/?(%y) and Hyo : HY?(%) —
H~1/2(%y) are compact [2,6] then operator F : HY2(X)) x HY/?(%y) —
HY2(21) x HY?(%y) is compact.

As a consequence we have that operator H : HY%(Z;) x HY2(%,) —
H=2(21) x H™Y/2(%y) is a Fredholm operator of index zero and the system
(11) has unique solution for arbitrary hy € H=/2(X)), hg € H-1/2(%y). O

Theorem 4. If (01,02) is a solution of the system (11), then the function

u = Wipy + Wapa, where p1 = o1 — vo, (#1,v0)1,(x,) = 0 and pa = o2 — po,
(K25 110) Lo(5) = 0, is a solution of the problem N with boundary conditions
fi € HY2(21) and fo € H-Y2(5y) which satisfy conditions (9).

Proof. We have (Hyo1,v9) = 0 and (Haog, pg) = 0 for arbitrary o1 € HI/Q(El),
o9 € HY2(Xy) [6]. Then from the first equation of the system (11) we get:

(H101,10)+(01,10) Ly(s) W07y 2y + (H2,102, v0) = (f1,v0) + 0]l 7,2y (13)

Let us consider functions w(x) = Waos(x) and v(z) =1, z € Q. Then fyar’lv =
Y0, Vo2V = po and from the first Green’s formula (1) we obtain:

0 = (Ha 109, 10) — (Ha09, 1o),
or (Ha109,19) = 0. Thus from (13) it follows that (o1,20)1,x,) = |’V0”%2(21)
and if 1 = o1 — vo then (u1,v0)1,(5,) = 0.
In the same way we can show that if uy = o2 — po then (u2, 1)1, (s,) = 0

and as a consequence we get that function u = Wipy + Waue satisfies sys-
tem (11). O
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