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Àíîòàöiÿ. Ó öüîìó äîñëiäæåííi ìè ïðåäñòàâëÿ¹ìî iòåðàöiéíó òåõíiêó âîñüìîãî ïîðÿäêó
äëÿ ðîçâ'ÿçàííÿ íåëiíiéíîãî ðiâíÿííÿ. Çàïðîïîíîâàíèé íàìè ìåòîä ¹ îïòèìàëüíèì çãiäíî ç
ãiïîòåçîþ Êóíãà-Òðàóáà, ùî âèìàãà¹ ëèøå ÷îòèðüîõ îöiíîê ôóíêöi¨ íà iòåðàöiþ äëÿ òåõíiêè
âîñüìîãî ïîðÿäêó. Ìè ïðîàíàëiçóâàëè òåîðåòè÷íi àñïåêòè íàøî¨ ñõåìè, ðåòåëüíî äîñëiäæóþ÷è
¨¨ âëàñòèâîñòi çáiæíîñòi ÷åðåç îñíîâíó òåîðåìó, ÿêà ñëóæèòü äëÿ äåìîíñòðàöi¨ ïîðÿäêó çáiæíîñòi.
Ùîá ïåðåâiðèòè ïðàêòè÷íó êîðèñíiñòü íàøèõ ôóíêöié îïòèìàëüíî¨ iòåðàöi¨, ìè ïðîâîäèìî ïîðiâ-
íÿëüíèé àíàëiç iç iñíóþ÷èìè êîíêóðåíòàìè, âèêîðèñòîâóþ÷è ñòàíäàðòíi àêàäåìi÷íi çàäà÷i. Öå
äîçâîëÿ¹ íàì ïiäêðåñëèòè ÷óäîâó ïðîäóêòèâíiñòü i åôåêòèâíiñòü íàøîãî ïiäõîäó äî ðîçâ'ÿçàííÿ
íåëiíiéíèõ ðiâíÿíü.

Abstract. In this study, we present an iterative technique of eighth order for solving a non-linear
equation. Our proposed method is optimal according to Kung-Traub conjecture, requiring only four
function evaluations per iteration for the eighth order technique. We analysed the theoretical aspects of
our scheme, thoroughly exploring its convergence properties through the main theorem, which serves to
demonstrate the convergence order. To check the practical utility of our optimal iteration functions, we
conduct a comparative analysis against existing competitors using standard academic problems. This
enables us to highlight the superior performance and e�ectiveness of our approach in solving non-linear
equations.

1 Introduction

The common problem of solving nonlinear equations in various scienti�c and engineering �elds
are in the form of θ(α) = 0. In real-world applications, exact solutions to these equations are
often impractical or even impossible to obtain, so iterative methods are utilized to �nd approximate
solutions. Newton's iteration method is a well-known approach for solving such equations, with
a order of convergence of two, making it an optimal method in terms of e�ciency, requiring two
function evaluations per iterative step.

In recent years, researchers have developed higher-order iterative methods that improve upon
classical methods like Newton's method. These higher-order methods achieve increased convergence
rates, but they also require a greater number of function evaluations per step. To balance e�ciency
and convergence order, a measure is called the e�ciency index has been introduced. The Kung-
Traub conjecture states that the order of convergence for any multi-point iterative method cannot
exceed the bound of 2n−1, where n is the number of functions evaluations per iteration, which is
considered as the optimal order.

The experts [2�4] discussed a recent development in the �eld of iterative methods, speci�cally
the elimination of derivatives from the iteration functions. The conventional challenge associated
with iterative methods involving derivatives is the computational e�ort required to calculate these
derivatives at each step. This di�culty is particularly pronounced for high-order derivatives, making
such methods impractical and time-consuming for real-world problems.

Key words: non-linear equations, order of convergence, Local convergence, Lipschitz continuity condition, Fr�echet
derivative, Basin of attraction.
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In [9], the researchers discussed the third order iterative method. In [1, 10, 14] the experts
discussed the fourth order iterative method, in [11] �fth order itertaive method, sixth order iterative
algorithm discussed in [5, 12] and seventh order iterative method discussed in [13]. Inspired by all
these higher order iterative methods we developed the eighth order optimal iterative method.

We emphasizes the signi�cance of optimal eighth-order multi-point derivative-free methods as
a noteworthy class of iterative methods. This method o�ers faster convergence towards the desired
root and demonstrate a superior e�ciency index compared to conventional methods like Newton's
method. Moreover, this method enable the achievement of a speci�ed level of accuracy which is
expressed in terms of digits within a relatively small number of iterations, further enhancing the
practical applicability.

In this paper, we focuses on developing optimal eighth order iterative methods using divided
di�erence techniques. After that we analyzes the convergence order of this method and provides
numerical examples to compare them with existing optimal method. The discussion extends to the
application of these methods to solve the problem of fraction conversion of nitrogen and hydrogen
to ammonia and Planck's radiation law.

This paper is structured as follows. In Section 2, we focuses on the development and analysis
of eighth-order iterative methods for solving nonlinear equations. In Section 3, we discusses the
convergence speed that is order of convergence of our proposed method. In Section 4, we apply
our technique to real-world problems, providing numerical examples and comparing it with existing
methods. Finally, in Section 5 we present the conclusions drawn from the proposed method.

2 Eighth-order proposed method

In this section, we introduce the derivative-free optimal eighth order iterative method. This
technique signi�cantly enhances the rate at which the algorithm converges to the root. In 2007
Jisheng Kou et.al [14] proposed fourth order optimal technique

βn = αn − θ(αn)

θ′(αn)
,

γn = αn −
(
θ(αn)

)2
+
(
θ(βn)

)2
θ′(αn)

(
θ(αn)− θ(βn)

) . (2.1)

To increase the order of convergence of (2.1) we add the Newton's method as

wn = γn − θ(γn)

θ′(γn)
.

By adding third step to (2.1), we get eighth-order convergence

βn = αn − θ(αn)

θ′(αn)
,

γn = αn −
(
θ(αn)

)2
+
(
θ(βn)

)2
θ′(αn)

(
θ(αn)− θ(βn)

) ,
wn+1 = γn − θ(γn)

θ′(γn)
.

(2.2)

In equation (2.2), the number of function is �ve. According to the Kung-Traub conjecture the order
of convergence should be 16. So to get the optimal order of convergence, we need to reduce the
computational cost that is to approximate θ′(γn) by using Newton interpolation

p(s) = a0 + a1(s− α) + a2(s− α)2 + a3(s− α)3,
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which satis�es p(α) = θ(α), p′(α) = θ′(α), p(β) = θ(β), p(γ) = θ(γ).
From this, we get

p(α) = θ(α) = a0,

p′(α) = θ′(α) = a1.

To determine the value of a2 and a3, we de�ne the �rst order and second order divided di�erence
as

θ[β, α] =
θ(β)− θ(α)

β − α
, θ[α, β, γ] =

θ[β, γ]− θ[α, β]

γ − α
.

Clearly, we have

θ[β, α, α] =
θ[α, α]− θ[β, α]

α− β

=
θ[β, α]− θ′(α]

β − α
.

Now,
p(β) = θ(β) = θ(α) + θ′(α)(β − α) + a2(β − α)2 + a3(β − α)3, (2.3)

p(γ) = θ(γ) = θ(α) + θ′(α)(γ − α) + a2(γ − α)2 + a3(γ − α)3. (2.4)

From equation (2.3) it follows

θ(β)− θ(α)

β − α
= θ′(α) + a2(β − α) + a3(β − α)2

and
θ[β, α]− θ′(α)

β − α
= a2 + a3(β − α).

Thus
θ[β, α, α] = a2 + a3(β − α). (2.5)

Similarly, from equation (2.4), we get

θ[γ, α, α] = a2 + a3(γ − α). (2.6)

From (2.5) and (2.6), we get the value of a3

a3 =
θ[β, α, α]− θ[γ, α, α]

β − γ
. (2.7)

Now using equation (2.7) in equation (2.5), we get the value of a2

a2 =
θ[β, α, α](γ − α)− θ[γ, α, α](β − α)

γ − β
. (2.8)

Using the approximation θ′(γn) ≈ p′(γn) and substituting the value of a1, a2, and a3 in equa-
tion (2.2), our proposed eighth-order iterative method (PM) is

βn = αn − θ(αn)

θ′(αn)
,

γn = αn −
(
θ(αn)

)2
+
(
θ(βn)

)2
θ′(αn)

(
θ(αn)− θ(βn)

) ,
wn+1 = γn − θ(γn)

θ′(αn) + 2a2(γn − αn) + 3a3(γn − αn)2
,

(2.9)

where a2 and a3 is given by (2.8) and (2.7) respectively.
Now equation (2.9) is optimal as per Kung-Traub conjecture. The total number of function

is four, and the order of convergence is equal 8. The e�ciency index of our proposed method is
8

1
4 = 1.681792830507.
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3 Convergence analysis

In this section, we prove the convergence analysis of (2.9). By employing Taylor's theorem we
conduct a comprehensive analysis of the iterative technique and we derive the error equation which
presents eighth order of convergence.

Theorem 3.1. Let θ : D ⊂ R → R be a su�ciently smooth function having continuous

derivatives. If θ(α) has a simple root α∗ in the open interval D and α0 chosen in su�ciently small

neighbourhood of α∗, then the method (2.9) is of eighth-order convergence and the error equation

is

en+1 =
(
c22

(
3c22 − c3

)) (
3c32 − c3c2 + c4

)
e8n +O

(
e9n
)
.

Proof. Let en = αn − α∗ be the error in n-th iteration. Using Taylor's series expansion around
α∗, we get

θ(αn) = θ(α∗) +
θ′(α∗)

1!
(αn − α∗) +

θ′′(α∗)

2!
(αn − α∗)2 +

θ′′′(α∗)

3!
(αn − α∗)3 + · · · .

Since α∗ is the simple root, so θ(α∗) = 0,

θ(αn) = θ′(α∗)

[
en +

θ′′(α∗)

2!θ′(α∗)
e2n +

θ′′′(α∗)

3!θ′(α∗)
e3n +

θ(IV )(α∗)

4!θ′(α∗)
e4n + · · ·

]
. (3.1)

Let ck = θ(k)(α∗)
k!θ′(α∗) , k = 2, 3, · · · . Using the value of ck in equation (3.1), we get

θ(αn) = θ′(α∗)
[
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + · · ·

]
,

and clearly

θ′(αn) = θ′(α∗)
[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n + 7c7e

6
n + · · ·

]
.

From the �rst step of equation (2.9), we get

βn = c2e
2
n +

(
2c3 − 2c22

)
e3n +

(
4c32 − 7c3c2 + 3c4

)
e4n

+
(
−8c42 + 20c3c

2
2 − 10c4c2 − 6c23 + 4c5

)
e5n

+
(
16c52 − 52c3c

3
2 + 28c4c

2
2 +

(
33c23 − 13c5

)
c2 − 17c3c4 + 5c6

)
e6n

− 2
(
16c62 − 64c3c

4
2 + 36c4c

3
2 + 9

(
7c23 − 2c5

)
c22 + (8c6 − 46c3c4) c2

− 9c33 + 6c24 + 11c3c5
)
e7n +

(
64c72 − 304c3c

5
2 + 176c4c

4
2

+
(
408c23 − 92c5

)
c32 + (44c6 − 348c3c4) c

2
2 +

(
−135c33 + 118c5c3 + 64c24

)
c2

+ c4
(
75c23 − 31c5

)
− 27c3c6

)
e8n +O

(
e9n
)
.

From the second step of equation (2.9), we get

γn =
(
3c32 − c2c3

)
e4n − 2

(
9c42 − 10c3c

2
2 + c4c2 + c23

)
e5n

+
(
70c52 − 130c3c

3
2 + 30c4c

2
2 +

(
42c23 − 3c5

)
c2 − 7c3c4

)
e6n

− 2
(
111c62 − 288c3c

4
2 + 92c4c

3
2 + 4

(
43c23 − 5c5

)
c22

+ 2 (c6 − 31c3c4) c2 − 14c33 + 3c24 + 5c3c5
)
e7n

+
(
624c72 − 2076c3c

5
2 + 799c4c

4
2 +

(
1862c23 − 239c5

)
c32 + (50c6 − 965c3c4) c

2
2

+
(
−395c33 + 164c5c3 + 91c24

)
c2 + c4

(
122c23 − 17c5

)
− 13c3c6

)
e8n +O

(
e9n
)
.
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From the �nal step of equation (2.9), we get

wn+1 = γn −
(
3c32 − c2c3

)
e4n − 2

(
9c42 − 10c3c

2
2 + c4c2 + c23

)
e5n

+
(
70c52 − 130c3c

3
2 + 30c4c

2
2 +

(
42c23 − 3c5

)
c2 − 7c3c4

)
e6n

− 2
(
111c62 − 288c3c

4
2 + 92c4c

3
2 + 4

(
43c23 − 5c5

)
c22

+ 2 (c6 − 31c3c4) c2 − 14c33 + 3c24 + 5c3c5

)
e7n

+
(
615c72 − 2070c3c

5
2 + 796c4c

4
2 +

(
1861c23 − 239c5

)
c32

+ (50c6 − 964c3c4) c
2
2 +

(
− 395c33 + 164c5c3

+ 91c24
)
c2 + c4

(
122c23 − 17c5

)
− 13c3c6

)
e8n +O

(
e9n
)
.

(3.2)

Hence, from equation (3.2), we concluded that the convergence order of the proposed method (2.9)
is equal 8 and it is represented by the error equation

en+1 = c22
(
3c22 − c3

) (
3c32 − c3c2 + c4

)
e8n +O

(
e9n
)
.

□

4 Numerical examples

In this section, we validate the e�cacy of our proposed eighth-order method through a series
of illustrative numerical examples. The chosen examples are carefully selected to showcase the
method's superior convergence properties and e�ciency in comparison to existing techniques. Em-
ploying the Mathematica 11.3 software, we present detailed numerical results that highlight the
accelerated convergence rates achieved by our method. We denote our approach as the proposed
method (PM) and compare its numerical results with two existing methods, denoted as 8KHT and
8LLW. In Tables 4.1-4.4, we present the numerical comparison between our results and the results
obtained from existing techniques. In the Tables 4.1-4.4, the �rst column represents the method
names, the second column shows the number of iterations required by each method, the third col-
umn presents the approximate root, the fourth column presents the absolute value of the function
at each iteration, the �fth column highlights the absolute di�erence between consecutive iterations,
the sixth column indicates the Computational Order of Convergence (COC), and the �nal column
reports the CPU time taken for each method.

Based on the comparison of absolute functional values, the di�erences between consecutive iter-
ations, and CPU time, our proposed method (PM) demonstrates superior performance compared to
the existing methods. PM achieves more accurate results with smaller di�erences between consec-
utive steps, and lower computational time as compared to existing techniques. In Figures 4.1-4.4,
we present the visual comparative analysis between our technique and existing methodologies.

4.1 Real-life application problem

We compared our results with the following methods: Kung and Traub proposed the method [7]
denoted by (8KHT)

βn = αn − θ(αn)

θ′(αn)
,

γn = βn − θ(βn)θ(αn)(
θ(αn)− θ(βn)

)2 θ(αn)

θ′(αn)
,
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αn+1 = γn − θ(αn)

θ′(αn)

θ(αn)θ(βn)θ(γn)(θ(αn))
2 + θ(βn)(θ(βn))− θ(γn)(

θ(αn)− θ(βn)
)2(

θ(αn)− θ(γn)
)2
(θ(βn)− θ(γn))

.

Liu and Wang proposed the method [8] denoted by (8LLW)

βn = αn − θ(αn)

θ′(αn)
,

γn = βn − θ(αn)

θ(αn)− 2θ(βn)

θ(βn)

θ′(αn)
,

αn+1 = γn − θ(γn)

θ′(γn)

( θ(αn)− θ(βn)

θ(αn)− 2θ(βn)

)2
+

θ(γn)

θ(βn)− θ(γn)
+

4θ(γn)

θ(αn) + θ(γn)
.

Example 4.1. Converting nitrogen and hydrogen into ammonia using a fractional approach,
see [6]. The proportion that represents the amount of nitrogen and hydrogen that have been
converted into ammonia in a chemical process is called the fractional conversion. We may apply this
metric to track the reaction's progress and �nd the best circumstances for getting the highest yield.
How much ammonia is produced as a percentage of the total nitrogen and hydrogen that were added
to the reaction system is called the fractional conversion. To optimize ammonia production, this
ratio serves as a clear indicator of the reaction's e�ciency and directs the adjustment of conditions.
As the quantity of ammonia produced is divided by the total quantity of nitrogen and hydrogen
input into the reaction system, we get the equation for the fractional conversion of nitrogen and
hydrogen to ammonia.

One way to calculate the fractional conversion is to divide the total amount of nitrogen and
hydrogen delivered into the reaction system by the amount of ammonia produced. This relationship
gives a ratio that shows how much ammonia (A) has been produced from nitrogen and hydrogen. We
can use the fractional conversion to track how far along the reaction is and when it will be �nished.
Decimal or percentage forms are common for expressing fractional conversions. In this problem,
the values of temperature and pressure have been taken as 500◦C and 250 atm, respectively. This
problem has the following non-linear form:

θ(α) = α4 − 7.79075α3 + 14.7445α2 + 2.511α− 1.674 = 0. (4.1)

The equation (4.1) has four roots. The roots are 0.384094, 0.27776, and 3.94854 ± 0.316124i. For
the initial value α0=0.3, the following Table 4.1 is provided.

Table 4.1. Numerical comparison of our results with existing techniques

method n αn | θ(αn) | | αn−1 − αn | COC CPU Time

PM
1 0.27776 4.3705× 10−12 7.21367× 10−13

2 0.27776 2.11053× 10−12 2.69063× 10−13 8 0.156

8KHT
1 0.27776 4.71531× 10−8 5.24834× 10−7

2 0.27776 1.11022× 10−6 Indeterminate 8 0.157

8LLW
1 0.278602 0.00757591 0.000841346

2 0.277761 0.0000107518 0.0000278803 8 0.235

3 0.277733 2.3973× 10−4 2.67015× 10−5

The Table 4.1 shows that the proposed method (PM) performs signi�cantly better than the
existing techniques, (8KHT and 8LLW). In PM, both the absolute value of the function and the
di�erence between consecutive errors are consistently smaller which indicates higher accuracy. In
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Residual Error for equation (4.1) Absolute Error for equation (4.1)

Fig. 4.1. Graphical comparison of our results with existing techniques

comparison with 8KHT, the error of PM is almost half. Additionally, PM takes less time to compute,
making it more e�cient. The Figure 4.1 also clearly demonstrate that the error is less in PM as
compared to existing techniques.

Example 4.2. Planck's blackbody radiation law, see [10]. Planck's radiation law, which is
sometimes called Planck's blackbody radiation law, describes the electromagnetic radiation spec-
trum density emitted by a blackbody at a given temperature when it is in thermal equilibrium.
According to this law, the rate of radiation and the blackbody's temperature are directly propor-
tional to the spectrum radiance, which is the quantity of radiation emitted per unit area, unit
solid angle, and unit frequency. The mathematical foundations of the emission of radiation from a
blackbody under di�erent conditions are provided by this basic law

θ(α) = e−α +
α

5
− 1 = 0, (4.2)

where α stands for the maximal wavelength. The exact roots of equation (4.2) are 0 and 4.96511.
For the initial value α0= 3, the following Table 4.2 is provided.

Table 4.2. Numerical comparison of our results with existing techniques

method n αn | θ(αn) | | αn−1 − αn | COC CPU Time

PM
1 4.9653832924707295940 5.2× 10−5 2.7× 10−4

2 4.9651142317442763037 2.0× 10−38 1.0× 10−37 8 0.828

3 4.9651142317442763037 8.8× 10−306 4.6× 10−305

8KHT
1 5.0029184879164884514 0.0073 0.038

2 4.9651142319790888075 4.5× 10−11 2.3× 10−10 8 0.843

3 4.9651142317442763037 7.0× 10−44 3.7× 10−43

8LLW
1 4.9940825929871859263 0.0056 0.029

2 4.9651194888792980915 1.0× 10−6 5.3× 10−6 8 0.843

3 4.9651142317444518319 3.4× 10−14 1.8× 10−13

The Table 4.2 shows that, in PM from �rst to the second iteration, and the second to the third
iteration, the error is approximately reduced eight times. When compared with 8KHT method, the
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error is reduced by approximately six times, while compared with 8LLW method, the error reduction
is approximately 20 times which indicates higher accuracy in PM. The Figure 4.2 provides the visual
representation of less error of PM as compared to existing techniques.

Residual Error for equation (4.2) Absolute Error for equation (4.2)

Fig. 4.2. Graphical comparison of our results with existing techniques

4.2 Academic problem

Example 4.3. Consider the nonlinear equation

θ(α) = ln(α2 + α+ 2)− α+ 1 = 0. (4.3)

The exact root of the equation (4.3) is 4.15259. For the initial value α0= 4, the following Table
4.3 is provided.

Table 4.3. Numerical comparison of our results with existing techniques

Method n αn | θ(αn) | | αn−1 − αn | COC CPU Time

PM
1 4.1525907367571995494 2.5× 10−14 4.1× 10−14

2 4.1525907367571582750 5.6× 10−115 9.3× 10−115 8 1.61

3 4.1525907367571582750 3.8× 10−920 6.3× 10−920

8KHT
1 4.1525912474738348606 3.1× 10−7 5.1× 10−7

2 4.1525907367571582750 3.4× 10−29 5.7× 10−29 8 1.673

3 4.1525907367571582750 5.3× 10−117 8.8× 10−117

8LLW
1 4.1528316692180028950 0.00015 0.00024

2 4.1525907373512851664 3.6× 10−10 5.9× 10−10 8 1.766

3 4.1525907367571582750 2.2× 10−21 3.6× 10−21

From Table 4.3, we can see that, the error in PM decreases approximately eight times from
the �rst to the second iteration, and from the second to third iteration. Compared to the 8KHT
method and 8LLW method, the error in PM is reduced to approximately seven times and 43 times
respectively. That gives better result. The Figure 4.3 visually shows, the smaller error in each
iteration of PM as compared to existing techniques.

Example 4.4. Consider the nonlinear equation

θ(α) = α3 + 4α2 − 10 = 0. (4.4)
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Residual Error for equation (4.3) Absolute Error for equation (4.3)

Fig. 4.3. Graphical comparison of our results with existing techniques

The exact root of equation (4.4) is 1.36523. For the initial value α0= 1, the following Table 4.4 is
provided.

Table 4.4. Numerical comparison of our results with existing techniques

method n αn | θ(αn) | | αn−1 − αn | COC CPU Time

PM
1 1.3653426948260834139 0.0019 0.00011

2 1.3652300134140968458 2.2× 10−32 1.3× 10−33 8 1.414

3 1.3652300134140968458 8.6× 10−264 5.2× 10−265

8KHT
1 1.3709171842544731067 0.094 0.0057

2 1.3709171842544731067 3.5× 10−9 2.1× 10−10 8 1.572

3 1.3652300134140968458 7.0× 10−39 4.3× 10−40

8LLW
1 1.3600211459109570607 0.086 0.0052

2 1.3652348576908087136 0.000080 4.8× 10−6 8 1.429

3 1.3652300134183159594 7.0× 10−11 4.2× 10−12

In Table 4.4, we can see that the error in PM decreases approximately eight times from the
�rst to the second iteration, and from the second to third iteration. Compared PM with 8KHT
method, the error decreases approximately seven times, while with 8LLW method PM achieves a
much larger error reduction approximately 24 times which indicates that PM is much e�ective at
minimizing error. The Figure 4.4 provides a clear visual of the error decreases with each iteration,
showing the ability of PM to reduce errors e�ciently.

5 Conclusion

In this study, we have introduced an optimal eighth-order iterative method for solving nonlinear
equations, by using the divided di�erence approximation. The method involves performing four
function evaluations per iteration, achieving a convergence order of eighth. Through convergence
analysis and numerical examples, we demonstrate the proposed method satis�ed of Kung-Traub
conjecture. Our proposed eighth-order PM method has been tested against known schemes, show-
casing its superiority. We applied the newly developed method, along with existing ones, to solve
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Residual Error for equation (4.4) Absolute Error for equation (4.4)

Fig. 4.4. Graphical comparison of our results with existing techniques

problems such as Conversion of nitrogen and hydrogen into ammonia and Planck's radiation law.
The results obtained highlighting the e�ectiveness of the eighth order PM method. Our numerical
experiments suggest that this method o�er a valuable alternative for e�ciently solving non-linear
equations.
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