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Àíîòàöiÿ. Ðîçãëÿäà¹òüñÿ ìîäèôiêàöiÿ åâðèñòè÷íîãî êðèòåðiþ îïòèìàëüíîãî âèáîðó ïàðà-

ìåòðà ñòàáiëiçàöi¨ â ïåâíié ñêií÷åííî-åëåìåíòíié ñõåìi äëÿ ñèíãóëÿðíî çáóðåíî¨ çàäà÷i äèôóçi¨-

àäâåêöi¨-ðåàêöi¨. Öåé êðèòåðié áàçó¹òüñÿ íà çàäà÷i ìiíiìiçàöi¨ ôóíêöi¨ ïàðàìåòðà ñòàáiëiçàöi¨

òà âiäïîâiäíîìó àëãîðèòìi çíàõîäæåííÿ ìiíiìóìó. Ôóíêöiÿ çàçâè÷àé äåìîíñòðó¹ äâi òî÷êè

åêñòðåìóìó: ëîêàëüíèé ìiíiìóì i ëîêàëüíèé ìàêñèìóì. Öå çìóøó¹ àëãîðèòì íåîäíîðàçîâî

âèêîðèñòîâóâàòè äîäàòêîâó êîíòðîëüîâàíó åâðèñòè÷íó ïðîöåäóðó ¾ñïðîáóé i ïåðåâið¿, ÿêà â

äåÿêèõ âèïàäêàõ ìîæå áóòè íååôåêòèâíîþ. Ó öié ñòàòòi ìè ïðîïîíó¹ìî ïðîñòi åâðèñòè÷íi

ìîäèôiêàöi¨ êðèòåðiþ äëÿ óñóíåííÿ äðóãî¨ ìàêñèìàëüíî¨ òî÷êè, ðîáëÿ÷è çâè÷àéíèé ìåòîä ðîç-

äiëåííÿ íàâïië çàñòîñîâíèì äî ïðîöåäóðè ïîøóêó ìiíiìóìó.

Abstract. We consider a modi�cation to a heuristic criterion for the optimal choice of the stabi-

lization parameter in a certain �nite element scheme for the singularly perturbed di�usion-advection-

reaction problem. This criterion is based on a minimization problem of the function of the stabilization

parameter and the corresponding algorithm for �nding the minimum. The function generally exhibits

two extremum points: a local minimum and a local maximum. This forces the algorithm to repeat-

edly use an additional controlled heuristic "try-and-check" procedure, which can be ine�cient in some

cases. In this article, we propose simple heuristic modi�cations to the criterion to eliminate the second

maximum point, making ordinary bisection method applicable to the minimum-�nding procedure.

1 Introduction

In this article, we consider the Dirichlet problem for the di�usion-advection-reaction (DAR)
equation with dominant advection. Problems of this kind are called singularly perturbed. Classical
�nite element schemes [2, 14] using coarse uniform meshes do not provide meaningful results for
such problems [13�15]. The main reason is the presence of arti�cial parasitic oscillations in the ap-
proximate �nite element solutions obtained. Various �nite element algorithms have been developed
to address this issue, including adaptive schemes [5, 13, 15], discontinuous �nite elements [8], and
stabilized schemes [1, 14].

Although adaptive schemes are mostly used for this purpose, we study one stabilization scheme
here due to certain bene�ts. In short, the main idea of stabilization is to add additional penalty terms
to the corresponding variational formulation to compensate for advection dominating over other
processes, thereby mitigating the parasitic high-frequency oscillations. Naturally, such stabilization
procedures may involve some parameters. These parameters determine the balance between the
level of applied smoothing of the solution and the overall accuracy.

In [6], we constructed a stabilization scheme for the �nite element method based on Tikhonov-
type regularization [10]. The scheme involves one positive regularization parameter, which must
be chosen appropriately to obtain meaningful results. To select this parameter, we proposed a
heuristic criterion in [4], formulated as an optimization problem for a loss function constructed as
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a composition of a certain linear functional and the obtained approximation. Since the introduced
function exhibits a special structure with several extremum points, we employed a simple heuristic
search algorithm to locate the interval where bisection method can then be used to �nd the needed
minimum. However, this procedure may not converge in some cases, resulting in an in�nite loop.

It is important to note that the proposed parameter estimation algorithm was designed with
the potential for quantum computing applications in �nite element methods. Speci�cally, it allows
for the possible use of the Harrow-Hassidim-Lloyd (HHL) linear solver [9] in certain parts of the
algorithm, which we will point out later.

In this work, we present several comparable and straightforward ways to modify the mentioned
heuristic criterion's loss function, making it suitable for direct application of the bisection algorithm.

The paper is structured as follows: First, we de�ne the model DAR problem. Next, we present
and review the algorithm from [6]. Then, we introduce the heuristic algorithm from [4]. Finally,
we provide the proposed heuristic modi�cations and test them on the same sample problem, which
was used in the numerical experiment in [4].

2 Diffusion-advection-reaction problem

We consider the following Dirichlet problem for the di�usion-advection-reaction equation
�nd function u : Ω̄ → R such that:

− µ∆u+ β⃗ · ∇u+ σu = f in Ω ⊂ Rm, m = 1, 2,

u = 0 on Γ = ∂Ω,

(2.1)

where Ω is a bounded domain with a Lipschitz boundary Γ = ∂Ω, µ = const > 0 and
σ = const > 0 are coe�cients of di�usion and reaction respectively, function f = f(x) and vector
β⃗ = (β1(x), β2(x)) represent the sources and advection �ow velocity respectively. We will consider
incompressible �ow, i.e., ∇ · β⃗ = 0 in Ω. In case of m = 1 we consider Ω = (0, 1) and the condition
of �ow incompressibility can be omitted.

The boundary value problem (2.1) admits the following variational formulation{
�nd u ∈ V := H1

0 (Ω) such that,

a(u, v) = 〈l, v〉 ∀v ∈ V,
(2.2)

where 
a(u, v) =

∫
Ω

(µ∇u · ∇v + β⃗v · ∇u+ σuv)dx ∀u, v ∈ V,

〈l, v〉 =
∫
Ω

fvdx ∀v ∈ V.

Here and below, we assume that the problem data satisfy the conditions of the Lax-Milgram
lemma, ensuring that it has a unique weak solution u ∈ V .

Main numerical quantity, that indicates, that the problem may be singularly perturbed is well-
known P�eclet number

Pe := µ−1
∥∥∥β⃗∥∥∥

∞
diam Ω.

Large values of this number indicate high domination of advection process over di�usion (which
is expressed by the term with second-order derivatives). This means that the equation is nearly
degenerate to a �rst-order hyperbolic equation. Such a structure induces boundary layers with high
gradients in the solution.
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3 Stabilization procedure

Let us recall a stabilization scheme, proposed in [6] for problems with large values of Pe. Let
Γ0 := {x ∈ ∂Ω|n⃗(x) · β⃗(x) < 0}, and n⃗ be an outward unit normal vector to the boundary of domain
Ω. Consider the following reduced problem

�nd function u0 ∈ C1(Ω) such that:

β⃗ · ∇u0 + σu0 = f in Ω,

u0|Γ0
= 0,

(3.1)

and replace the original variational problem (2.2) with the following one

given parameter λ = const ≥ 0,

given u0 is the solution of (3.1),

�nd u∗ ∈ V such that:

a(u∗, v) + λ(u∗, v)V = 〈l, v〉+ λ(u0, v)V ∀v ∈ V.

(3.2)

To numerically solve the (3.2), we use the �nite element method with linear elements. In 2D
space, we employ a quasi-uniform mesh with triangular elements. In the 1D case, we use a uniform
mesh. Additionally, in both cases, we de�nitely use coarse meshes.

To use the equation from the (3.2) we need to solve two additional problems. First of all, we
need to �nd u0 from (3.1). The second problem is to choose the value of the parameter λ. In the
following chapters, we discuss both.

We should note that the provided stabilization procedure is similar in some ways to Tikhonov
regularization. The purpose of the introduced procedure is to overcome the oscillatory nature of the
�nite element solution of the singularly perturbed problem obtained on coarse meshes. That is, we
use stabilization/regularization to make the approximate solution precise enough and suitable for
researchers without requiring any mesh re�nement. Additionally, since we use a coarse mesh and the
singularly perturbed problem will have a boundary layer, we will not be able to �t our approximation
to that boundary layer structure. This is a drawback of the provided scheme compared to adaptive
schemes, but when we consider, for example, air pollution migration problems modeled by the DAR
equation, we may be primarily interested in the general solution structure, and having it imprecise
only in the thin boundary layer zone is acceptable.

4 Solving auxiliary Cauchy problem

The problem (3.1) is actually Cauchy problem restricted to domain Ω. We suppose that there
are no closed integral curves of �eld β⃗ which are entirely contained within the domain Ω. If there
is a closed integral curve contained within the domain, it can be shown that, in general, a problem
of this kind may not be well-posed.

To numerically solve (3.1), it is proposed in [6] to use method of characteristics to decompose
the problem to a system of ordinary di�erential equations (ODEs) and then use some methods
like Euler or Runge-Kutta for solving obtained system with some interpolation to calculate the
solution value between the obtained curves. Algorithm is the following. Consider β⃗ 6= 0 in Ω. Let
us de�ne parametrization of curve Γ0 [0,mesΓ0] 3 η 7→ ρ(η) = (ρ1(η), ρ2(η)) ∈ Γ̄0 which maps
parameter η bijectively onto the Γ̄0. For each value of η we can �nd integral curve of vector �eld
β⃗: x(t, η) = (x1(t, η), x2(t, η)) ∈ Ω as a solution of the following Cauchy problem{

x′t(t, η) = β⃗(x(t, η)),

x(0, η) = ρ(η).
(4.1)
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Let us de�ne the function z(t, η) = u0(x(t, η)). Taking into account (4.1), we can derive the following
z′t(t, η) = β⃗(x(t, η)) · ∇xu0(x(t, η)). Using the last equality and (4.1), we can rewrite problem (3.1)
as a Cauchy problem for the following system parametrized by η

x′t(t, η) = β⃗(x(t, η)),

z′t(t, η) = f(x(t, η))− σz(t, η),

x(0, η) = ρ(η),

z(0, η) = 0.

(4.2)

We have just presented a well-known method of characteristics [7].
Now, we can consider the discrete set of points {η1, ..., ηk} ∈ [0,mesΓ0] and apply the Runge-

Kutta method to solve (4.2) for each of the values ηi. In that way we obtain the set of curves,
which are lying on the surface u0(x) de�ned by (3.1). The last step would be to introduce some
interpolation technique to interpolate found curves onto entire domain to obtain approximation to
u0.

5 Overview of the stabilization parameter choice algorithm

The aforementioned stabilization procedure relies on the parameter λ. Choosing this parame-
ter is critical for providing an adequate approximation for advection-dominated problems. If the
parameter is set too small, it will lead to an approximate solution with high-frequency oscillations,
making it impractical. Conversely, if the parameter is set too large, it will result in a very smoothed
solution that loses some of the structure of the exact solution.

That is, we need to choose the parameter as a point between the mentioned cases. For this
purpose, in [4], we propose a certain heuristic optimization problem in which the minimum point
of the de�ned loss function is the exact value of the parameter λ.

We consider the following optimization problem
given λmax > 0,

�nd λ = λ∗ such that

F (λ) → localmin on (0, λmax),

(5.1)

where

λmax :=

∥∥∥β⃗∥∥∥
∞

diam Ω

Peuser
(5.2)

and Peuser is a user-de�ned value of some "ordinary" Pe value, i.e. for which �nite element method
on coarse uniform mesh should work �ne. For example we can use Peuser = 10. Loss function F (λ)
is de�ned as follows.

Consider some triangulation of the domain Ω and the ordering of triangulation nodes: x1, x2,
..., xN . For node i and function u let us de�ne discrete Laplace operator approximation to (∆u)(xi)
as [3]

∆̃(u, i) :=
1

2Ai

∑
j∈Nmesh(i)

(cotαij + cotβij)(u(xj)− u(xi)), (5.3)

where Ai is 1/3 of sum of areas of adjacent triangles, Nmesh(i) is a set of indexes of all adjacent
nodes for node i, αij and βij are angles opposite to edge (i, j). De�ned discrete operator is an
approximation to the continuous Laplace operator in selected point.

Let us denote by u∗h(x;λ) approximation u∗h(x) computed for certain λ. Let us denote by
N̄mesh(i) := Nmesh(i) ∪ {i}. Let us denote by M ⊂ Ω̄ the set of all nodes (points) of the mesh and
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by Γout := ∂Ω \ Γ0. If S is some set of node indexes, then we de�ne N̄mesh(S) := ∪j∈SN̄mesh(j). If
we have R ⊂ Ω̄, we can extend de�nition of N̄mesh to the form N̄mesh(R) := x[∪j:xj∈RN̄mesh(j)],
where x[S] := {xj |j ∈ S}.

Let us de�ne set of nodes Q := M \ (Γ0 ∪ N̄mesh(Γout)), i.e. Q will contain all internal nodes,
excluding those nodes, which are adjacent to any nodes from Γout. Note, that Γout in the case of
large Pe values will be the part of boundary, adjacent to the boundary layer with high gradient.

Let us de�ne now loss function F (λ)

F (λ) :=
1

‖u∗h( · ;λ)‖vect

∣∣∣∣∣∣
∑
j∈Q

sign(∆̃(u∗h( · ; 0), j))∆̃(u∗h( · ;λ), j)

∣∣∣∣∣∣ , (5.4)

where by u∗h( · ;λ) we denoted u∗h as a function of �rst independent argument and �xed second
argument. By ‖u∗h‖vect we denote the Euclidean norm of the vector of coe�cients of the �nite
element approximation u∗h( · ;λ).

The general structure of the function F (λ) and a minimum point is depicted on the Fig. 5.1.

Fig. 5.1. General structure of the loss function [4]

Note, that for 1D case in the sum in expression (5.4) we use divided di�erences as an approxi-
mation to the Laplace operator.

6 Motivation and heuristic optimization

In this section, we brie�y review the idea behind the proposed optimization strategy [4].
The main component of this optimization problem is the loss function (5.4). Let us analyze its

structure. It is, in fact, a weighted sum of the values of the discrete Laplace operator, calculated at
the triangular mesh nodes, excluding the zone with the boundary layer.

The common normalizing multiplier 1/‖u∗h( · ;λ)‖vect is necessary for the possible computation
of this loss function on a quantum computer, which we will discuss later.

Let us recall that for singularly perturbed problems with large Pe number, oscillations typically
spread over the entire domain, making the �nite element approximation on a coarse mesh completely
unusable. As λ increases, we will observe a decrease in uniform oscillations. In Fig. 6.1, we show
the typical evolution of the solution with increasing values of λ.

Since the Laplace operator measures the curvature of the function graph in a certain sense,
the set of all weights {sign(∆̃(u∗h( · ; 0), j))} represents the actual oscillation pattern of the original
(non-stabilized) �nite element solution with λ = 0. We use this pattern as a reference. On the
other hand, the values {∆̃(u∗h( · ;λ), j)} represent the actual oscillation pattern (and its amplitude)
of the stabilized solution for a given λ.
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Fig. 6.1. Finite element approximations of 1D problem on unit interval with µ = σ = 1, β = f = 103

for di�erent λ: 0, 1, 5, 15, 25, 35, 50, 80 (top to down). Dashed line represents exact solution

Thus, the sum in the expression for the loss function is simply an inner product between the
vectors of the reference oscillation pattern (with a high rate of oscillation) and the oscillation pattern
for the stabilized solution. This inner product measures the "correlation" between the oscillation
pattern that we want to avoid and the actual oscillation.

Taking this fact into account, we can predict the general structure of the function, which should
have a short, rapidly descending part corresponding to the decrease in uniform oscillation amplitude
as λ increases, followed by a long, slowly descending part after a certain point when high-frequency
oscillations have already been eliminated.

Note that the graph in Fig. 5.1 also contains a zone depicted as "2". Adding this relatively short
but slowly increasing zone is achieved by excluding the nodes from the sum in the loss function
that are adjacent to the �nite elements containing the boundary layer. This approach is precisely
analyzed in [4].

Also, note that such an ascending zone is necessary to locate the required point (minimum),
which, as experiments show, corresponds to the optimal λ value. This is the value for which we
have already eliminated parasitic oscillations, while the solution structure corresponds to the exact
solution over the entire domain, except for the thin zone consisting only of �nite elements containing
the boundary layer.

7 Possibility of computing the loss function on a quantum computer

An important note should be considered regarding the computation of F (λ). The discrete
Laplace operator (5.3) is constructed from the values of the �nite element approximation at the
mesh nodes. If we expand each term ∆̃(u∗h( · ;λ), j) with that operator in the expression (5.4) and
regroup the sum, we will obtain the normalized inner product of a constant vector (with respect to
the mesh) and the vector of nodal values of the approximation u∗h( · ;λ).

Now, taking into account that the vector of nodal values of the approximation is obtained from
the linear system of algebraic equations, we see that the loss function F (λ) is actually proportional
to the projection of the solution of the linear system onto a �xed prede�ned direction.

Let us recall the problem of solving the linear system on the quantum computer, speci�cally the
well-known Harrow-Hassidim-Lloyd algorithm (HHL) [9]. Suppose that we have built a quantum
scheme that can represent our matrix in a suitable form for the mentioned algorithm. After applying
HHL, we will obtain a vector proportional to the solution of the linear system encoded as a quantum
state.
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From the nature of quantum computations, we know that it is not possible to practically re-
construct all individual components (amplitudes) of the obtained vector (quantum state), but it
is possible to compute some integral quantity � speci�cally, the inner product with a prede�ned
vector. For that purpose, we can use the SWAP test [11]. This is exactly what we need, as the
structure of F (λ) de�nes the same inner product.

8 Heuristic method for optimization problem

In short, to solve (5.1) in [4], we proposed using two phases. The �rst phase is to �nd the upper
bound a of the interval (0, a), which lies somewhere below the zone "2" of the curve in Fig. 5.1. The
second phase involves running bisections to �nd the minimum on (0, a).

For the �rst phase, we employ a simple heuristic geometrically stepped approach to move the
point sequentially to the left until we �nd the ascending part "2" of the loss function.

To be more precise, we will next cite the chapter from [4] that describes the simple heuristic
algorithm we used. This algorithm employs certain heuristic rules because the structure of F (λ)
does not allow us to localize the zone near the minimum, in which there is a unique extremum point.
The algorithm consists of two steps

Algorithm 1 Solving optimization problem

1: Find point λloc ∈ (0, λmax] such that F ′(λloc) > 0;
2: Solve the optimization problem (5.1) on interval (0, λloc).

Step 1 tries to localize zone around local minimum point, in which this minimum is the only
extremum point. This is needed, since from Fig. 5.1 we see that local maximum between zones 2
and 3. For this step we use two heuristic procedures. The step 1 can be detailed as follows

Algorithm 2 Solving optimization problem (Algorithm 1 � Step 1)

1: λloc :=ProcSimple(λmax)
2: if λloc > 0 then
3: return λloc

4: else

5: return ProcRe�ned(λmax)
6: end if

In "simple" procedure we use bisections with selecting always left subintervals to try to �nd
ascending part of F (λ).

Algorithm 3 Procedure ProcSimple(λmax)

Require: δ > 0, MaxIter ∈ N;
1: initialization: λloc := λmax;
2: while F (λloc − δ) ≥ F (λloc + δ) and MaxIter > 0 do
3: λloc := λloc/2;
4: MaxIter := MaxIter − 1;
5: end while

6: if MaxIter ≤ 0 then
7: return 0
8: end if

9: return λloc

Re�ned procedure has the same steps, but it extends step 3 to make additional "backsteps" to
the right from current parameter value.
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Algorithm 4 Procedure ProcRe�ned(λmax)

Require: δ > 0, MaxIter ∈ N;
1: initialization: λloc := λmax;
2: while F (λloc − δ) ≥ F (λloc + δ) and MaxIter > 0 do
3: λback :=ProcRe�nedBacksteps(λloc)
4: if λback > 0 then
5: return λback

6: end if

7: λloc := λloc/2;
8: MaxIter := MaxIter − 1;
9: end while

10: if MaxIter ≤ 0 then
11: return 0
12: end if

13: return λloc

Algorithm 5 Procedure ProcRe�nedBacksteps(λloc)

Require: δ > 0, MaxIter ∈ N;
1: initialization: k := 1;
2: initialization: λback := λloc/2;
3: while F (λback − δ) ≥ F (λback + δ) and k < MaxIter do

4: λback := λloc

(
1− 1

2

(
2
3

)k)
;

5: k := k + 1;
6: end while

7: if k ≥ MaxIter then
8: return 0
9: end if

10: return λback

Note, that formula λback := λloc

(
1− 1

2

(
2
3

)k)
used in ProcRe�nedBacksteps represents bi-

section, with choosing always right subinterval for next step with midpoint always shifted to the
left.

For Algorithm 1 step 2 we use standard bisections to �nd minimum with given precision.

9 Modifications to the loss function

We can see from Fig. 5.1 that to apply a simple bisection algorithm to �nd the minimum, we can
somehow eliminate the part "3" from the F (λ) graph. Experiments show that the part "2" can be
quite small, so capturing it through the stepped point movement (which resembles a "brute force"
search) described in Algorithm 2 can, in some cases, skip that "2" region, thus leading us to an
in�nite loop (which we will technically stop by maximum iteration condition, resulting in stopping
the search). Additionally, when the ascending part of the graph is short and lies near the left side,
we have a long tail behaving like a convex function that converges to a horizontal asymptote. It is
not hard to see from the stabilization procedure that the function needs to have that asymptote.

To change the shape of the loss function, we propose using simple graph shifting. Note that
such a modi�cation should not signi�cantly change the minimum point of the function.

We can shift the graph in di�erent ways.
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Algorithm 6 Solving optimization problem (Algorithm 1 � Step 2)

Require: δ > 0, T ol > 0, MaxIter ∈ N;
1: initialization: a := 0;
2: initialization: b := λloc;
3: while b− a ≥ Tol do
4: λmid := a+b

2
5: if F (λmid − δ) < F (λmid + δ) then
6: b := λmid

7: else

8: a := λmid

9: end if

10: end while

11: return λmid

9.1 Linear shifting

Let us introduce three points λi = λmax(i + 1)/4 for i = 1, 2, 3. Consider positive user-de�ned
constant "shifting factor" K which is relatively large. For example, we can use K = 10.

We de�ne now linearly shifted loss function in the following manner

Hl(λ) := F (λ) +Kλmax{|F ′(λi)|}3i=1.

In Hl we just add linear function based on some slope coe�cient, which we want to set much
greater than average slope coe�cient on the tail part of the graph of F (λ), to progressively com-
pensate and overcome the negative slope of the F (λ).

To calculate F ′(λi) we can just use �nite di�erence approximation.
Note, that if we detect that any of the values F ′(λi), i = 1, 2, 3 is greater than zero, we can

reassign λmax to that value and start bisections algorithm for the corresponding interval.

9.2 Quadratic shifting

Another way of shifting is the following. As in previous case, if we detect that any of the values
F ′(λi), i = 1, 2, 3 is greater than zero, we can reassign λmax to that value and start bisections for
the corresponding interval. Otherwise, let us de�ne values yi := F (λi), where λi are the same as
for linear shifting. K is also the same user-de�ned constant. Let us de�ne

Kq :=
16(2y2 − y1 − y3)

2λ2
max

,

Cq := 2y1 − y3 −Kqλ
2
max/2.

If Kq ≥ 0 we fallback to usage of the linear shifting, otherwise we introduce auxiliary quadratic
function

Q(λ) := Cq − y1 −
1

λmax
(y3 − y1)(2λ− λmax)−

Kq

2
(λmax − λ)(2λ− λmax)

and de�ne new loss function

Hq(λ) := F (λ) +KQ(λ).

If we have a function F (λ) with a relatively larger maximum (see Fig. 5.1) between zones "2"
and "3", then the curvature of the function in zone "3" will also be larger. Applying linear shifting
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requires a larger shifting factor K, which can lead to greater changes in the minimum point of λ to
the left. To overcome this e�ect, we �rst build a quadratic interpolation function g(λ) that �ts the
F (λ) curve exactly at the points (λi, yi)

3
i=1 to approximately "capture" the curvature of F (λ) in its

tail zone "3". Then we consider the function Q(λ) = K(g(0) − g(λ)), which is de�ned as above.
It is, in fact, a vertically re�ected function of g(λ) that passes through the origin. This vertical
re�ection is intended to compensate for the curvature of the descending part "3" of the F (λ) graph.

9.3 Rotation-projection shifting

The last approach is to apply a clockwise rotation to the coordinate system and then express the
function graph in terms of that rotated system. This rotation should compensate for the descending
part "3" of the graph of F (λ).

Consider a user-de�ned small positive angle γ. Let s consider the line y = −kλ, where k := tan γ
and y is the coordinate in which we show the values of F (λ). We will treat this line as the new,
rotated λ axis. We can calculate the projection of the point (λ, F (λ)) onto that line as follows

λproj(λ) =
λ− kF (λ)

1 + k2
,

Fproj(λ) = −kλproj(λ).

Now we de�ne new loss function in the following way

Hp(λ) := ‖(λ, F (λ))− (λproj(λ), Fproj(λ))‖,

where we used Euclidean norm ‖(y1, y2)‖ :=
√∑2

i=1 y
2
i in the second term to calculate the distance

between the point and the rotated λ axis.

10 Numerical experiments

We consider two experiments: one for a 2D problem and another for a 1D problem. In both
cases, the main purpose of the experiment is to observe how the optimal λ point changes when
di�erent types of shifting are applied with various values of the parameters. For each case, we
provide the obtained optimal λ. In both numerical examples, we used Runge-Kutta method for the
solution of obtained system of ODEs.

In the 1D experiment, we additionally provide graphs of the approximate solutions along with
the corresponding exact solution graph, as the 1D case is more illustrative. We also demonstrate
the in�uence of λ in the 1D example.

Let us consider as example 2D problem data from [4]

Ω = (0, 1)2, µ = 1, β⃗(x, y) ≡ (103, 103), σ = 102,

f(x, y) = 105 cos(4.5πx/2) cos(4.5πy/2).
(10.1)

Table 10.1. Optimal parameter calculation results for the problem (10.1)

shifting type K=10 K=100 γ = 10◦ γ = 20◦

linear 20.117 20.117 - -

quadratic 20.117 20.117 - -

projection - - 20.117 20.117

We use Peuser = 5, making λmax = 400. The tolerance for �nding optimal λ is λmax/10
3. Mesh

is quasi-uniform with maximum triangle area 0.005. Without shifting we found λoptimal = 20.117.
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With di�erent types of shifting and with di�erent values of parameters we obtained the data placed
in Table 10.1. The code is written in Python.

For solving linear systems we used standard function numpy.linalg.solve from NumPy lib, which
under the hood calls LAPACK routine "gesv". This routine uses LU factorization to solve the linear
system.

Obviously, due to tolerance selection as λmax/10
3, for all cases mentioned in Table 10.1 the

number of bisections is equal to 10.

By bolding, we indicate the cases where, after shifting, only the bisection algorithm was used
without additional steps to �nd the interval. As we can see, the minimum point does not change
with the application of di�erent shifting strategies. This can be explained as follows. Despite
being singularly perturbed, this problem does not have a particularly "hard" singular perturbation.
Therefore, the optimal λ is located close to the 0 point, making it less sensitive to those shifts, which
are progressive in the increasing λ. We also observe that the algorithm's behavior may depend on
the con�gurable constants.

Consider another example � similar 1D problem but with larger Pe number

Ω = (0, 1), µ = 1, β(x) = 104, σ = 102, f(x) = 106 cos(4.5πx). (10.2)

Computed λmax = 103. We used uniform mesh with 20 elements. Obtained optimal
λoptimal = 232.910. The same experiment data is shown in Table 10.2.

Table 10.2. Optimal parameter calculation results for problem (10.2)

shifting type K=10 K=100 γ = 10◦ γ = 20◦

linear 232.91 145.99 - -

quadratic 232.91 133.30 - -

projection - - 228.02 184.08

As in 2D example, we choose the tolerance for �nding lambda in the same way, as λmax/10
3,

making bisections count equal to 10.

For solving linear system we used Thomas algorithm, since obtained matrices are tridiagonal.

In all cases where shifting was applied, we obtained a function that has one extremum point,
meaning that only the bisection method was used to approximate that minimum point. We observe
that for larger values of Pe, the obtained λ values are more sensitive to the shifting. For linear
and quadratic shifting with K = 100, as well as for projection shifting with a larger angle, we see
a decrease in the obtained parameter.

In Fig. 10.1, we present the �nite element solution graphs for Table 10.2.

As we see on Fig. 10.1, the graphs of obtained �nite element approximations u∗h( · ;λoptimal) are
slightly di�erent only around the last element near the boundary layer. Other part of the solution
still keep the same shape. Due to our recent ongoing investigation, we can combine h-adaptivity
with described stabilization, making the overall algorithm much less sensitive on the parameter
value, since we will neglect that by using adaptivity.

In general, introduced shifting strategies are comparable and can be used with some automatic
code, which will try di�erent methods and use them appropriately on demand (as many popular
systems like Wolfram Mathematica do).

It is not clear what is the best way to choose parameters of the shifting. At least, we can see
from the experiments that there is way less ambiguity in selection of those parameters, rather then
manually selecting λ. For now we leave the selection of those parameter to the researcher.
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Fig. 10.1. Finite element approximations of 1D problem with data (10.2) with di�erent type
of shifting used (corresponding to Table 10.2). Dashed line represents exact solution

11 Advantages of the method and general remarks

Nowadays, the primary and most commonly used approach to dealing with singularly perturbed
problems is mesh adaptation. This approach is widely adopted due to its universality. On the other
hand, the development of quantum computing has sparked natural interest in investigating the
possibility of combining it with the �nite element method. Since the most computationally intensive
part of the �nite element method is solving linear systems, it is natural to attempt to exploit the
currently available algorithms for solving linear systems on a quantum computer. Despite this,
the probabilistic nature of quantum computations, particularly wave function collapse, makes it
impossible to use the quantum linear solver directly in the same way as it is used in classical FEM
schemes. These and other related questions are extensively discussed in the articles [11, 12].

The main point regarding the quantum linear solver is that the solution is encoded in the
amplitudes of the quantum state. Thus, we can obtain some integral quantity by measuring, but
not the entire vector of all individual amplitudes at once.

To overcome the oscillatory nature of the solution to the singularly perturbed problem, a typical
adaptive scheme implements a loop of mesh re�nement. In each iteration, we calculate the �nite
element solution on the current mesh by leveraging a linear solver. Then, we �nd the distribution of
error indicators and re�ne the mesh based on that. In the next iteration, we start with the solution
on the new, re�ned mesh, and so on. The process �nishes when some stopping criterion, based on
a posteriori error estimate, is met.

For the researcher, each of the intermediate steps of the adaptive scheme may not be interesting.
Despite this, we still need to have the entire set of individual nodal values at each step, since we need
to compute per-element error indicators based on the local values of the �nite element solutions.
Moreover, we need to implement a comparison procedure to select the appropriate subset of elements
based on their error indicator values. Therefore, the direct use of the HHL algorithm in adaptive
schemes seems impractical.
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In the proposed Algorithm 1, similarly to adaptive schemes, we also have a loop, at each step of
which we need to compute the value of the loss function F (λ) and the approximation u∗h( · ;λ). As
discussed previously, we can leverage the HHL algorithm together with the SWAP test to compute
the value of F (λ). Thus, the value of the loss function is the only quantity based on the �nite
element solution u∗h( · ;λ) that we wish to extract at each step. Therefore, we de�nitely do not need
to extract the entire vector of nodal values at the intermediate steps. Only in the �nal step we need
to solve the FEM linear system on a classical computer to provide the researcher with the solution.
Note that, due to the use of a �xed coarse mesh, the dimension of the linear system in the �nal step
will be the same as in the initial step of the adaptive algorithm, making the proposed algorithm
more computationally e�cient even in the classic sense.

Thus, in the proposed algorithm, each of the intermediate linear slover steps for obtaining the
�nite element solution can be implemented on a quantum computer, which is its main advantage
compared to the most widely used adaptive schemes.

It is important to note that the implementation of this algorithm on a real quantum computer
is not yet practical due to limited resources. The currently available number of qubits in existing
hardware is insu�cient to handle computations for real problems. Additionally, implementing
error-tolerant computations with error-correcting codes presents challenges due to the large depth
of overall circuits and the relatively short lifespan of quantum states.

One general note on the asymptotic number of steps that the algorithm will take: due to the
expression of the form (5.2), we can see that the overall number of steps will be O(log(Pe)).

12 Drawbacks of the algorithm and notes on error estimates

We encounter three main drawbacks of the algorithm.

The �rst drawback of the algorithm is that it is heuristic. Despite all the steps being logically
derived and making sense, there is no strict proof of the structure of the graph of the loss function.

The second drawback is that by using coarse meshes, we cannot �t the approximation to the
thin boundary layer. We would say this is not a drawback, but rather a property of the stabilization
scheme, which by de�nition uses a �xed mesh with a low element count. Further improvement of the
approximation is achieved not through mesh adaptation, but by changing the variational problem
with added penalizing terms. This limitation can be mitigated by the limited use of h-adaptivity
in combination with the described algorithm, and this is a topic of our ongoing research, with some
results currently under review.

The last drawback is the absence of general a priori estimates for the stabilization procedure
itself. So far, we have not derived any a priori estimates. Despite this, in the same ongoing research,
we have derived some special a posteriori error estimates to guide the combined stabilization-
adaptation process. In short, those estimates combine the standard technique of obtaining residual-
based estimates simultaneously with two variational problems, (2.2) and (3.2), to yield a single
vector of per-element error indicators.

13 Conclusions

In this article, we constructed a modi�ed heuristic procedure for �nding the optimal value of the
regularization parameter for a certain stabilized �nite element scheme. We proposed three similar
shifting strategies to improve the structure of the loss function and prevent the overall procedure
from entering in�nite loops.

Numerical results are provided for both 2D and 1D problems.
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